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Abstract

We develop a model where: (i) banks take deposits and make investments;

(ii) their liabilities facilitate third-party transactions. Other models have (i)

or (ii), not both, although we argue they are intimately connected: we show

that they both emerge from limited commitment. We describe an environment,

characterize desirable allocations, and interpret the outcomes as banking ar-

rangements. Banks are essential: without them, the set of feasible allocations

is inferior. As a technical contribution, we characterize dynamically optimal

credit allocations with frictions, show they involve backloading, and analyze

how this interact with banking. We also confront the theory with economic

history.
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1 Introduction

We develop a theory designed to capture two salient features of banking: (i) banks ac-

cept deposits and make investments on behalf of their depositors; (ii) their liabilities,

claims on said deposits, facilitate exchange with other parties. While many models

of banking consider either the first or second feature, it is desirable to have a frame-

work incorporating both, because the two activities are connected in a fundamental

way: as we show, both originate from limited commitment. Of course, banks may do

more – e.g., provide liquidity insurance and information processing. We downplay

these functions, as they have been studied extensively elsewhere, and focus instead

on banks arising endogenously as a response to commitment problems. Commit-

ment issues are central because banking concerns the intertemporal allocations of

resources, which hinges on the incentive to make good on one’s obligations. In our

model, banks emerge as agents that are relatively trustworthy, in the sense that they

have stronger incentives to honor promises, and this allows claims on deposits to

serve as a means of payment – i.e., as inside money.

The formal model incorporates the following ingredients. There are two types

of infinitely-lived agents. Each period is divided into two subperiods, where type

1 wants to consume in the first and type 2 in the second. Type 1 can produce

and invest in the first subperiod, thus generating second-subperiod output valued

by type 2. In a first-best world, it would be efficient to have type 2 lend to type

1, enabling the latter to consume and invest in the first subperiod, with type 2

consuming the product of the investment in the second. In the second subperiod,

1



however, type 1 is tempted to abscond with the proceeds, as in the cash-diversion

models of DeMarzo and Fishman (2007) or Biais et al. (2007). This is more of a

problem to the extent type 1 is impatient, has better opportunities to divert the

proceeds of the investments, and has a smaller probability or a higher cost of getting

caught. In general, we need to impose a repayment constraint guaranteeing type

1 does not behave opportunistically, hindering the ability to exploit intertemporal

gains from trade.

We then introduce another agent, who is like the first type, but may have less

incentive to behave opportunistically, or a higher expected cost of getting caught.

Even if this third agent is less efficient than type 1 at producing second-subperiod

output, when the incentive problem is severe the following scheme is efficient: type 1

works in the first subperiod and deposits the output with the third agent, who invests

on his behalf. Since the third agent is more inclined to deliver the goods, type 2 is

willing to produce more in the first subperiod for type 1. This resembles banking:

type 1 deposits resources with, and delegates investment to, his banker; and claims

on these deposits facilitate transactions between 1 and 2. These liabilities constitute

inside money, a role played historically by banknotes, and later checks and debit

cards, backed by demand deposits. This arrangement allows type 1 to get more from

type 2, compared to pure credit, because the banker is more trustworthy than the

type 1 agent. Again, this can be true even if the banker does not have access to the

highest-return investment opportunities. The function of formal theory is to make

these ideas precise, and hopefully derive new insights. We also put the model to work
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in several substantive applications, and compare its predictions with some historical

observations.1

Before getting more into results we briefly discuss the methodological approach.

Our aim is to proceed with minimal prior assumptions about who banks are or what

they do. The agents that become bankers here are not fundamentally different from

depositors – e.g., in terms of preferences – although they may have less of a problem

dealing with certain frictions, like imperfect monitoring and commitment. Obviously

some frictions are needed, since models like Arrow-Debreu have no role for banks,

or, for that matter, any other institution whose raison d’etre is to facilitate the

process of exchange. The simplest such institution is money, and a classic challenge

in monetary economics is to ask what frictions make money essential in the following

sense (see, e.g., Wallace 2001,2010): money is said to be essential when the set of

feasible allocations is bigger, or better, with it than without it. We similarly want

to know when banking is essential.

Here the planner, or mechanism, instructs certain agents to perform functions

resembling elements of banking. This activity is essential: if it were ruled out the

set of incentive-feasible allocations would be inferior. We call this a New Monetarist

approach because it is in the tradition of research labeled this way in recent surveys

by Williamson and Wright (2010a,2010b) and Nosal and Rocheteau (2011). Given

the existence of these sources, this is not the place to go into detail on the methods
1The applications are previewed below, but we mention here that we concentrate on issues

other than ones that have been the focus of previous research, e.g., banks’ tendency to borrow
short and lend long, or to make deposits available on demand except in unusual circumstances like
suspensions. These can be analyzed in our framework, too, but we prefer to discuss more novel
results, like the role of claims on deposits in the exchange process.
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or models in that literature, except to say that it focuses on studying the process of

exchange explicitly, and on deriving endogenously institutions designed to facilitate

that process. To pick just one example, Kiyotaki and Wright (1989) set out to show

that money can emerge endogenously, and is essential, as a medium of exchange that

helps deal with frictions making direct barter difficult. Our goal is to think about

banking in a similar way.2

Our analysis formalizes the idea that agents are better suited to banking (ac-

cepting and investing deposits) when they have a good combination of the following

characteristics that make them more trustworthy (less inclined to renege on obliga-

tions):

• they are relatively patient;

• they are more visible, by which we mean more easily monitored;

• they have a greater stake in, or connection to, the economic system;

• they have access to better investment opportunities;

• they derive lower payoffs from opportunistically diverting resources.
2Mattesini et al. (2009) go into more detail concerning the way this approach relates to the

one advocated by Townsend (1987,1988). This method first lays out an environment, including
frictions (e.g., information or commitment problems), and then tries to interpret outcomes (e.g.,
incentive-feasible or efficient allocations) in terms of institutions one observes in actual economies.
We want to know which frictions lead to banking. For this question, one cannot assume missing
markets, incomplete contracts etc., although something like that may emerge: “the theory should
explain why markets sometimes exist and sometimes do not, so that economic organisation falls
out in the solution to the mechanism design problem” (Townsend 1988). Relatedly, we adhere to a
generalization of Wallace’s (1998) dictum: “money should not be a primitive in monetary theory –
in the same way that a firm should not be a primitive in industrial organization theory or a bond a
primitive in finance.”By extension, banks should not be a primitive in banking theory; they should
arise endogenously. See Araujo and Minetti (2011) for recent work in a similar spirit.
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Some of these (like the first) point may be obvious, but others seem less so – e.g.,

the idea that it may be good to delegate investments to those with a greater stake

in the system, even if they have less lucrative investment opportunities, since this

facilitates transactions.

In terms of the banking literature, Gorton-Winton (2002) and Freixas-Rochet

(2008) provide surveys. Much of this work is based on information frictions, including

adverse selection, moral hazard and costly state verification. One strand, originating

with Diamond and Dybvig (1983), interprets banks as coalitions providing liquidity

insurance.3 Another approach, pioneered by Leland and Pyle (1977) and developed

by Boyd and Prescott (1986), interprets banks as information-sharing coalitions. A

related approach, following Diamond (1984) and Williamson (1986,1987), interprets

banks as delegated monitors taking advantage of returns to scale. Relative to these

theories, although monitoring is also part of the story, we focus more on commitment

problems. Rajan (1998) previously criticized banking theory for not concentrating

more on incomplete contracts, or markets, based on limited enforcement.4 We agree

that commitment/enforcement issues are central, but we think this needs to be en-

dogenous. In this regard, we build on Kehoe and Levine (1993) and Alvarez and

Jermann (2000). We also highlight Cavalcanti and Wallace (1999a,1999b), where

inside money also facilitates trade.5 However, that model does not have deposits,

delegated investments, loans or endogenous monitoring. Our approach captures these
3See Ennis-Keister (2009) for a recent contribution with references.
4In addition, see Calomiris-Kahn (1991), Myers-Rajan (1998) and Diamond-Rajan (2001).
5In addition, see Wallace (2005), Koeppl et al. (2008), Andolfatto-Nosal (2009), Huangfu-Sun

(2011), He et al. (2005,2008), Mills (2008), Sanches-Williamson (2010), and Monnet-Sanches (2012).

5



features as well as the role of bank liabilities in the exchange process.

The rest of the paper is organized as follows. Section 2 describes the basic envi-

ronment. Section 3 discusses feasible and efficient allocations when there is a single

group, consisting of two types. This provides a simple model of credit with imper-

fect commitment, monitoring and collateral, but no banks. Section 4 considers two

groups, and shows it can be efficient for some agents in one to act as bankers for

the other group. Section 5 shows how to implement efficient allocations using inside

(bank) money. Section 6 takes up various extensions, to study which agents should

be bankers, how many we should have, and how big they should be, as well as asking

how we should monitor them when it is costly, what is the tradeoff between trust

and return, and why might intermediated lending be useful.

For simplicity, most of the analysis focuses on stationary allocations. Section 7

relaxes this, by considering efficient dynamic allocations, and shows the main eco-

nomic conclusions survive. These results probably constitute the biggest technical

contribution of the paper – which is for the most part meant to be as simple as we

could make it – since it was not trivial (at least to us) to derive the properties of

efficient dynamic allocations, even if the general approach goes back a long way (at

least to Thomas and Worall 1988). In terms of substantive findings, we show that

efficient credit allocations involve backloading rewards for borrowers – e.g., offering

small loans at relatively high interest at the beginning, followed by larger loans at

better terms in the longer run. This provides the greatest incentives for borrowers

to repay. Given all of this theory, Section 8 compares the predictions of the model

6



to some facts from banking history. Section 9 concludes.

2 The Environment

Time is discrete and continues forever. There are two groups, i = a, b, each with

a [0, 1] measure of agents. In a group, agents can be one of two types, j = 1, 2.6

We refer to agents of type j in group i as ji (e.g., 1a is a type 1 agent in group a).

Each period, each agent can be active or inactive. Inactive agents do not consume

or produce, and get utility normalized to 0, in that period. Agents in group i are

active with probability γi and inactive with probability 1 − γi, where γi can differ

across groups, so that they can have different degrees of connection to the economic

system. In each period there are two group-specific goods, 1i and 2i, i = a, b. What

defines a group is that agents have utility functions with only goods produced in

their group as arguments. Active agents 1i consume good 1i and produce good

2i, while active agents 2i consume good 2i and produce good 1i. Letting xj and yj

denote consumption and production by agents j, utility U j (xj, yj) is increasing in xj,

decreasing in yj and satisfies the usual differentiability and curvature conditions. We

assume U j (0, 0) = 0, normal goods, and a discount factor across periods β ∈ (0, 1).

Each period is divided into two subperiods, and good j must be consumed in

subperiod j. Thus, type 1i agents must consume before 2i, making credit necessary.

To have a notion of collateral, good 2i is produced in the first subperiod, and invested

by either type 1a or 1b, with fixed gross return ρa or ρb in terms of second-subperiod
6Types are permanent. The main results go through when agents are randomly assigned types

each period, but the analysis is messier (Mattesini et. al. 2009).
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goods (there is no investment across periods, only across subperiods). This may be

as simple as pure storage, perhaps for safekeeping, or any other investment; merely

for ease of presentation do we impose a fixed return. To generate gains from trade

in a simple way, type 2i agents cannot invest for themselves; more generally, we

could let them invest, just not as efficiently. Also, type 1i agent can invest goods

produced in either group. An important friction is this: when type 1i agents are

supposed to deliver the goods, in the second subperiod, they can renege to obtain

a payoff λi per unit of diverted resources, over and above U1 (x1, y1). If λi = 0,

investment constitutes perfect collateral, since type 1i has no gain from reneging

when the production cost is sunk. But if λi > 0, there is an opportunity cost to

delivering the goods.

Formally, diversion can be interpreted as type 1 consuming the investment re-

turns, but this is meant to stand in for the general idea that investors can extract

resources opportunistically. Also, when we say utility for agents is defined only over

goods produced in their own group, we mean U i is only a function of these goods.

Type 1i also gets a payoff λiy, over and above U i, from absconding with y units of

the proceeds of investments of goods from either group. This is the key incentive

issue in the model.7 We assume U1 (x1, y1) + λiρiy1 ≤ U1 (x1, 0) for all x1 and y1, so

that ex ante it is never efficient for type 1i to produce and invest for their own con-

sumption; they only consider consuming the proceeds opportunistically ex post. In

this setup, by design, any trade or other interaction across groups is only interesting
7The introduction of λi > 0 is motivated by the idea that, although investment acts as collateral,

as Ferguson (2008) puts it “Collateral is, after all, only good if a creditor can get his hands on it.”
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for its incentive effects, not for more standard mercantile reasons. Also, we point

out that there is no outside money here, so that we can concentrate more clearly on

inside money in what follows.

Although Section 7 generalizes this, for now we focus on stationary symmetric

allocations. These are given by vectors (xi
1, y

i
1, x

i
2, y

i
2) for each group i, plus descrip-

tions of cross-group transfers, investment and diversion. We sometimes proceed as if

a planner collects production and allocates it to investors and consumers, but this is

only to ease the presentation – all the planner really does is make suggestions con-

cerning actions or allocations. When there are no transfers across groups or diversion,

allocations are resource feasible if xi
1 = yi2 and xi

2 = ρiyi1, so we can summarize these

allocations by (xi
1, y

i
1). When there is no ambiguity we drop the subscript and write

(xi, yi). Finally, the planner/mechanism has an imperfect monitoring technology:

a deviation from suggestions in group i = a, b is detected with probability πi, and

goes undetected with probability 1− πi. This random monitoring technology differs

across groups to capture the idea that some are more visible than others, and thus,

presumably, less inclined to misbehave.8

3 One Group

With a single group we drop the superscript i. Now all a planner/mechanism can

do is recommend a resource-feasible allocation (x, y) for agents in the group. This
8There are several ways to interpret random monitoring, but a straightforward one is to assume

imperfect record keeping: information concerning deviations simply “gets lost”with probability 1−πi

across periods. Later we make monitoring endogenous.
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recommendation is incentive feasible, or IF, as long as no one wants to deviate.

Although we focus on the case where agents cannot commit to future actions, suppose

as a benchmark they can commit to some degree. One notion is full commitment, at

the beginning of time, even before agents know their type, chosen at random before

production, exchange and consumption commence. Then (x, y) is IF as long as the

total surplus is positive,

S(x, y) ≡ U1(x, y) + U2 (ρy, x) ≥ 0. (1)

Another notion is partial commitment, where agents can commit at the beginning but

only after knowing types. Then IF allocations entail two participation constraints

U1(x, y) ≥ 0 (2)

U2 (ρy, x) ≥ 0. (3)

The situation in which we are actually interested involves no commitment. This

means that, at the start of every period there are two participation conditions

U1(x, y) + βV 1 (x, y) ≥ (1− π) βV 1 (x, y) (4)

U2 (ρy, x) + βV 2 (x, y) ≥ (1− π) βV 2 (x, y) , (5)

where V j (x, y) is the continuation value of agent j. In (4)-(5) the LHS is the payoff

from following the recommendation, while the RHS is the deviation payoff.9 A

deviation is detected with probability π, which results in a punishment to future
9At the suggestion of a referee, we mention that although we do not explicitly define a formal

game, we can still use methods from game theory, including the one-shot deviation principle – which,
for our purposes, is nothing more than the unimprovability principle of dynamic programming.
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autarky with payoff 0 (one could consider weaker punishments but this is obviously

the most effective). With probability 1−π it goes undetected and hence unpunished.

Since agents are active with probability γ each period, V 1 (x, y) = γU1 (x, y) / (1− β)

and V 2 (x, y) = γU2 (ρy, x) / (1− β). From this it is immediate that (4)-(5) hold if

and only if (2)-(3) hold, so dynamic considerations for now only involve happenings

across subperiods within a period.

When agent 1 invests y, he promises to deliver ρy units of good 2 in the next

subperiod, but can always renege for a short-term gain λρy. If caught, he is punished

with future autarky, and so he delivers the goods only if

βV 1 (x, y) ≥ λρy + (1− π) βV 1 (x, y) ,

where the RHS is the payoff to behaving opportunistically, again detected with prob-

ability 1− π. Inserting V 1 (x, y) and letting δ ≡ λ (1− β) /πγβ, this reduces to

U1 (x, y) ≥ δρy. (6)

As shown in Figure 1, the repayment constraint (6) is a clockwise rotation of 1’s

participation constraint. This plays a prominent role in the sequel. A low β, low

monitoring probability π, low stake in the system γ, or high diversion value λ all

increase δ and the temptation to default. We say an agent is more trustworthy when

he has smaller δ, which means he can credibly promise more, and therefore would

have a bigger credit limit.

The IF set with no commitment is denoted

F = {(x, y) | (3) and (6) hold} .
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Clearly, F is convex, compact and contains points other than (0, 0), so there are

gains from trade, under the usual Inada conditions. For comparison, the IF set with

partial commitment FP satisfies (2)-(3), and with full commitment FF only requires

(1). Notice F ⊂ FP ⊂ FF . In Figure 1 (x̂, ŷ) is the unique point other than (0, 0)

where (3) and (6) intersect, and δb < δa implies
�
x̂b, ŷb

�
is northeast of (x̂a, ŷa). A

more general result, also easy to verify, is:

Lemma 1 If δa > δb and ρa = ρb or δa = δb and ρa < ρb then Fa ⊂ F b
.

One can define various notions of allocations that are Pareto optimal, or PO. The

ex ante PO allocation is the (xo, yo) that maximizes the surplus S(x, y). A natural

criterion for ex post (conditional on type) welfare, which we use below, is

W (x, y) = ω1U
1 (x, y) + ω2U

2 (ρy, x) . (7)

As we vary the weights ωi in (7) we get the contract curve, or Pareto set,

P =

�
(x, y) | ρ∂U

1 (x, y)

∂x

∂U2 (ρy, x)

∂y
=

∂U2 (ρy, x)

∂x

∂U1 (x, y)

∂y

�
. (8)

It is possible that P ∩ F = ∅ or P ∩ F �= ∅. Other useful results, also simple enough

to state without proofs, are given by:

Lemma 2 Given normal goods, P defines a downward-sloping curve in (x, y) space.

Lemma 3 Let (x�, y�) solve maxW (x, y) subject to (x, y) ∈ F . Then (x�, y�) ∈ P iff

(6) is not binding.
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4 Multiple Groups

Consider two groups a and b, where ρa = ρb = ρ, but δa > δb so that 1a have more of

a commitment problem than 1b. The IF set for the economy as a whole is given by

allocations (xi, yi) for each group, plus descriptions of interactions across groups, as

we now discuss. Consider first a pure transfer t: all 1b agents produce an extra t > 0

units of good 2b and give it to agents 1a, who invest it and use the proceeds for their

own benefit.10 Since there are γb/γa active 1b agents for each active 1a, payoffs are

Û1 (xa, ya, t) ≡ U1 (xa, ya) + λaρtγb/γa (9)

Û1
�
xb, yb, t

�
≡ U1

�
xb, yb + t

�
. (10)

We need to analyze transfers for the following reason. We are ultimately interested

in a different scheme, where output from one group is transferred to the other group

to invest, with the proceeds transferred back. This delegated investment activity

can change the IF set, but so can pure transfers. To make the point that delegated

investment can do more we must first analyze transfers.

With t > 0, the participation conditions for 2i are as before,

U2
�
ρyi, xi

�
≥ 0, i = a, b, (11)

but the repayment constraints for 1i change to11

Û1
�
xi, yi, t

�
≥ δiρyi, i = a, b. (12)

10Transfers in the other direction, from 1a to 1b, are given by t < 0, and it is never useful to
have simultaneous transfers in both directions. Note that t is like a lump sum tax on 1b, with
the proceeds going to 1a, except it is not compulsory: 1b can choose to not pay t, at the risk of
punishment to future autarky, which happens with probability πb.

11In case it is not clear, (12) is the condition for 1i to pay off 2i (i.e., agents in their own group).
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The IF set with t > 0 satisfies (11)-(12). Notice t only enters these conditions

through Û1 (xi, yi, t). Thus, when it comes time to settle obligations, t affects the

continuation values for 1a and 1b, but not short-run temptations. Since agents 1a are

better off and agents 1b worse off with t > 0, this relaxes the repayment constraints

in group a and tightens them in group b. Therefore, if these constraints are binding

in group a but not b, this expands the IF set.

To see just how much we can accomplish with transfers, consider the biggest t

satisfying (11)-(12). This maximization problem has a unique solution t̃, and implies

allocations (x̃i, ỹi). Clearly, t̃ rises as δb falls. Suppose, e.g., U1 (x, y) = x − y,

U2 (ρy, x) = u (ρy) − x, and to make the case stark λb = 0. Then IF allocations in

group b solve

u
�
ρyb

�
− xb ≥ 0 (13)

xb − yb − t ≥ 0. (14)

The maximum t and the implied allocation for group b are given by ỹb = y∗, x̃b =

u (ρy∗) and t̃ = u (ρy∗)− y∗, where ρu�(ρy∗) = 1. In this example, production by 1b

is efficient, 2b give all their surplus to 1b, and t̃ taxes away the entire surplus of group

b. Giving t̃ to 1a relaxes their repayment constraint as much as is feasible (any t > t̃

leads to defection in group b).

We now introduce deposits, d > 0, production of good 2a by 1a transferred to

For 1a who is meant to divert the returns from t, this can be written

λaρtγb/γa + βγaÛ1 (xa, ya, t) /(1− β) ≥ λaρ
�
tγb/γa + ya

�
+ (1− π)βγaÛ1 (xa, ya, t) /(1− β),

which simplifies to (12).
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1b for investment, then transferred back for consumption by 2a. Since 1a is now

only obliged to pay out ρ (ya − d) in the second subperiod, his repayment constraint

becomes12

Û1(xa, ya, t) ≥ δaρ (ya − d) . (15)

Similarly, since 1b is now obliged to pay out ρ
�
yb + dγa/γb

�
,

Û1
�
xb, yb, t

�
≥ δbρ

�
yb + γad/γb

�
. (16)

We also face a resource constraint

0 ≤ d ≤ ya. (17)

The IF set with deposits Fd is given by an allocation (xi, yi) for each group i, together

with t and d, satisfying (11) and (15)-(17).

We relax the repayment constraint in group a while tightening it in group b with

d > 0, as we did with t > 0, but deposits and transfers are different in the way

they impact incentives: t only affects continuation values, while d affects directly

within-period temptations to renege. This implies that deposits are essential in the

technical sense: if we start with d = 0, and then allow d > 0, for some parameters,

the IF set expands.13 The following states this formally:

Proposition 1 For all parameters ∃d such that F ⊂ Fd; for some parameters ∃d

such that Fd\F �= ∅.

12Notice that these conditions allow transfers as well as deposits, since they use the payoffs
defined in (9)-(10).

13We are not claiming F ⊂ Fd for all parameters, or for any d > 0; the claim is that deposits
can be essential for some parameters when we get to choose d.
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Proof : Since any allocation in F can be supported once deposits are allowed by

setting d = 0, it is trivial that F ⊂ Fd. To show more allocations may be feasible

with deposits, it suffices to give an example. To make it easy, suppose λb = 0, so that

holding deposits does not affect the repayment constraint in group b. Then there are

some allocations for group a that are only feasible with d > 0. To see this, set t = t̃ to

maximize the transfer from b to a, as discussed above. Given
�
xb, yb, t

�
=

�
x̃b, ỹb, t̃

�
,

all incentive constraints are satisfied in group b. In group a, the relevant conditions

(11) and (15) are

U2 (ρya, xa) ≥ 0

Û1(xa, ya, t̃) ≥ δaρ (ya − d) .

For any allocation such that δaρya ≥ Û1(xa, ya, t̃), d > 0 relaxes the repayment

constraint for 1a, and hence expands the IF set. �

While the example in the proof uses λb = 0, this is not necessary. Suppose for

both groups U1 (x, y) = u (x)−y, U2 (y, x) = y−x, ρ = 1, δi = δ and λi = λ ∈ (0, 1),

and consider maximizing welfare with weights ωi
1 = 1 and ωi

2 = 0. We can summarize

Fd when b makes transfers t and accepts deposits d by pairs (xa, xb) satisfying

u (xa)− xa + λt ≥ δ (xa − d) (18)

u
�
xb
�
− xb − t ≥ δ

�
xb + d

�
; (19)

and symmetrically for group a. To show deposits expand F beyond what can be

achieved with transfers, notice t > 0 relaxes (18) by λt and tightens (19) by t, while

d = λt/δ relaxes (18) by the same amount and only tightens (19) by λt < t. To
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obtain the same level of slack in one group, deposits require less tightening in the

other. Figure 2 shows feasible outcomes in (xa, xb) space for three cases. If t = d = 0,

F is the square. Using transfers but no deposits, it expands by the dark shaded areas.

Using deposits as well further expands F to also include the light shaded areas.

The economic intuition is simple. Suppose that you are 1a, and want goods from

2a in exchange for a pledge to pay him back later. When the time comes to pay

up, if λa > 0 you are tempted to renege, opportunistically diverting the resources

that were earmarked for settlement. This limits your credit. Your temptation is

relaxed by depositing d > 0 with 1b to invest on your behalf. Of course, we must

also consider 1b’s temptation, but generally, whenever δb < δa, deposits allow you

to get more from 2a than a personal pledge. As a special case, λb = 0 means 1b is

totally credible – or, his investments constitute perfect collateral – so you may as

well deposit all your resources with him. Another case of interest is πa = 0, where

your personal promise is worth nothing, and therefore absent deposits you cannot

trade at all. In any event, we think it is accurate to call 1b your banker, and we

expand on this idea in the next two Sections.14

5 Inside Money

Having deposits used in payments is imperative for a complete model of banking, as

over time various bank-issued instruments have played this role, from notes to checks
14Although we find the applications in Sections 5-6 interesting, the paper is written so that

readers can skip any or all of this material, and proceed directly to the analysis of optimal dynamic
allocations in Section 7, if so inclined, with no loss of conceptual continuity.
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to debit cards. This is one of the most commonly understood functions of banking,

as evidenced by Selgin’s (2007) entry on “Banks” for Encyclopedia Britannica:

Genuine banks are distinguished from other kinds of financial interme-
diaries by the readily transferable or ‘spendable’ nature of their IOUs,
which allows those IOUs to serve as a means of exchange, that is, money.
Commercial bank money today consists mainly of deposit balances that
can be transferred either by means of paper orders known as checks or
electronically using plastic ‘debit’ cards.

Most formal banking models fail to speak to this issue. In Diamond-Dybvig,

e.g., agents with a desire to consume withdraw deposits and eat them. Presumably

this is not meant to be taken literally, but stands in for the idea that they want to

buy something. But why can’t they buy it using claims on deposits as a means of

payment? We understand that the model is not intended to address this question.

But then, as useful as it may be for some purposes, the model is incomplete. Inside

money does aid in transactions in Cavalcanti-Wallace, but that has nothing that

resembles deposits or investment. A complete model ought to have both.

We proceed by first presenting a relatively heuristic discussion, then give the

equations to make the ideas precise. The question with which we begin is, how can

a mechanism keep track of agents’ actions in the arrangement discussed above? One

way that seems especially appealing when record keeping is imperfect or costly is the

following: when an agent 1a wants to consume in the first subperiod, he produces and

deposits output ya with an agent 1b in exchange for a receipt. Think of this receipt

as a bearer note for ρya. He gives this note to 2a in exchange for his consumption

good xa. Naturally, 2a accepts it, since the note is backed by the promise of the
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trustworthy 1b. Agent 2a carries this paper to the second subperiod, when he wants

to consume (here he wants to consume with probability 1, but it is not hard to make

it random, if one wants the setup to look more like Diamond-Dybvig). At that point

2a redeems the note for his consumption good. Banker 1b pays 2a out of deposits –

principle plus return on investments – to clear, or settle, the obligation. See Figure

3.15

To make this more precise, we need to be specific about how agents meet and

what is observed. Therefore, we now explicitly interpret groups a and b as inhabiting

different locations, or islands, to use a metaphor common in the search literature.

To ease the exposition, let γi = ρi = 1, U1 = u (x)− y and U2 = u (y)− x. Also, let

πa = 0 < πb. To discuss circulating paper, we assume that any agent can costlessly

produce indivisible, durable, intrinsically worthless objects that could, in principle,

function as bearer notes. To avoid technical details, we assume agents can store at

most one note. This does not affect the interesting results, but it means we do not

have to rule out potential deviations where agents accumulate multiple notes over

time, and cash them in bundles – which they do not want to do, anyway, but it

clutters the presentation to have to prove it. In passing, we mention that this is

actually an assumption shared with Cavalcanti-Wallace, as wll as many of the earlies

search-based models of outside money.
15Another scheme, suggested by Chris Phelan, that one might consider is this: suppose 1a

gives his output directly to 2a who then gives it to 1b to invest. This has deposits and delegated
investment, but not inside money. One can rule that out, however, by assuming 2a cannot transport
first-subperiod goods, just like they cannot invest them. This makes the receipts or bearer notes
essential.
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Meetings occur as follows. Within each group j, each agent 1j is randomly

matched with one 2j for the entire period. We know from standard arguments (e.g.,

Wallace 2010) that some medium of exchange is necessary for trade on island a, given

πa = 0, but notes issued by 1a have no value because 1a has no incentive to redeem

them. And these notes cannot have value as fiat objects, since no one would give

up anything to get one when he can print his own for free. This is not the case for

notes issued by 1b. In addition to the above matching structure, before 1j and 2j pair

off, 1a agents travel to island b, and meet some 1b at random. Then, in subperiod

2, agent 2a can travel to island b and meet anyone they like – i.e., search by 2a is

directed. This means that 2a takes the note back to the same 1b agent that issued it.

Alternatively, one could imagine setting up the model so that type 1b agents redeem

notes issued by any bank, as in Cavalcanit et al. (1999); this may have interesting

consequences, but for now we take the route of directed search, along the lines of

Corbae et al. (2003). In any case, for completeness we have to specify what happens

if n > 1 agents of type 2a try to match with the same 1b agent. In this case, we

assume that all n have the same probability 1/n, but only one actually meets (can

trade with) him.

Now consider a simple mechanism that suggests a particular set of actions –

basically, meetings and trades – but agents can either accept or reject suggestions.

If in a meeting both agents accept, they implement a suggested trade; otherwise,

there is no trade in the meeting. If someone rejects a suggested trade, as above, with

probability πi they are punished with future autarky. There are four types of trades
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we need to consider: (1) when 1a meets 1b, the former should produce and deposit

d = ya in exchange for the latter’s note; (2) when 1a meets 2a, the latter should

produce xa in exchange for a note if the former has one, and otherwise there is no

trade; (3) when 2a meets the 1b who issued the note, the latter redeems it for ya;

and (4) within group b, xb is produced by 2b for 1b in the first subperiod and yb is

delivered to 2b in the second, as in the previous Sections, without using notes.

To describe payoffs, let ṽa1 (m) be the expected utility of 1a when he meets 1b and

va1 (m) his expected utility when he meets 2a, given he has m ∈ {0, 1} notes. Then

ṽa1 (0) = va1 (1)− ya

ṽa1 (1) = va1 (1)

va1 (1) = u (xa) + βṽa1(0)

va1 (0) = βṽa1(0).

Thus, if 1a has m = 0 when he meets 1b, he produces/deposits ya in exchange for a

note, while if m = 1 they do not trade. Then, when 1a meets 2a, if m = 1 he swaps

the note for xa, while if m = 0 he leaves without consuming, and in either case starts

next period with m = 0. Similarly, for 2a

va2 (0) = ṽa2 (1)− xa

va2 (1) = ṽa2 (1)

ṽa2 (1) = u (ya) + βva2 (0)

ṽa2 (0) = βva2 (0) ,
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where va2 (m) is the payoff when 2a has m notes and meets 1a, while ṽa2 (m) is the

payoff when he meets 1b. Since πa = 0, on island a the relevant incentive conditions

are va1 (1)− ya ≥ va1 (0) ≥ 0 and ṽa2 (1)− xa ≥ ṽa2 (0) ≥ 0, which reduce to

u (xa) ≥ ya (20)

u (ya) ≥ xa. (21)

Let ṽb1 be the payoff 1b, a representative banker, when he meets 1a, and vb1 his

payoff when he meets 2b in the first subperiod. Let v̂b1 (a) be his payoff when he meets

2a and v̂b1 (b) his payoff when he meets 2b in the second subperiod. Then

ṽb1 = vb1 = u
�
xb
�
− yb + v̂b1 (a)

v̂b1 (a) = v̂b1 (b) = βṽb1.

The important decision for 1b is repayment. If he reneges on either 2a or 2b, he is

detected and punished with probability πb. But 2a only gets ya if he gives 1b one of

his notes; otherwise, the mechanism says 1b can use the resources for his own benefit

λbya. It is this part of the implementation scheme that gives 2a the incentive to

produce for a note in the first place. The payoff for 2b is vb2 = u
�
yb
�
− xb + βvb2,

which we need to consider, of course, since we need 2b to produce for 1b – this is how

we give 1b an equilibrium payoff that provides him with the incentive to honor his

obligations. Therefore, the incentive conditions for group b reduce to

u
�
yb
�

≥ xb (22)

u
�
xb
�

≥ yb (23)

u
�
xb
�
− yb ≥ δb

�
yb + ya

�
(24)
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Given the utility functions used here, (22)-(23) are the participation constraints,

and (24) is the repayment constraint, for group b described earlier. Similarly, for

group a (20)-(21) are the participation constraints, and there is no repayment con-

straint given πa = 0. Summarizing, we have:

Proposition 2 Any (xa, ya) and
�
xb, yb

�
satisfying (20)-(24) can be decentralized

using banknotes. Since these same constraints define the IF set, any IF allocation

can be decentralized in this way.

In terms of economics, deposit-backed paper issued by b is used as a payment

instrument by a, which is essential since πa = 0 implies there is no trade on island

a when d = 0. In equilibrium, all transactions on island a are now spot trades

of goods for notes – i.e., the economy has been fully monetized. This is related

to the use of currency in models like Kiyotaki-Wright (1993), except we use bank

liabilities rather than fiat objects. The difference from most banking theory is that

our bank liabilities facilitate transactions. The difference from Cavalcanti-Wallace

banks is that our banks do more than issue notes, they also take deposits and make

investments.

6 Extensions and Applications

Having shown that banking is essential, and that IF allocations can be decentralized

using deposit-backed notes, we take up other questions. For this, we use welfare

criterion (7), with the same weights in each groups: ωa
j = ωb

j .
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6.1 Who Should Hold Deposits?

With two groups and δa > δb, we claim it may be desirable in a Pareto sense to have

group a deposit resources with group b, but not the other way around. Let

�
xi
0, y

i
0

�
= argmaxW i

�
xi, yi

�
s.t.

�
xi, yi

�
∈ F i (25)

be the best IF allocation in group i with no transfers or deposits. At (xi
0, y

i
0), we

obviously cannot make type 1i better off without making type 2i worse off, or vice-

versa, given d = 0. So, we ask, can we make agents in one group better off without

hurting the other group with d �= 0? If deposits can help, in this regard, we say they

are Pareto essential, or PE.16

Consider the allocation that, for some d, solves

�
xi
d, y

i
d

�
= argmaxW i

�
xi, yi

�
s.t.

�
xi, yi

�
∈ F i

d (26)

where, compared to (25), the constraint set in (26) is now F i
d. Deposits are PE if

there is d such that W i (xi
d, y

i
d) ≥ W i (xi

0, y
i
0) for both i with one strict inequality.

Proposition 3 Deposits from a to b are PE iff the repayment constraint binds for

a and not b.

We omit a formal proof (see Mattesini et al. 2009), but the idea is simple: if

the repayment constraint binds in one group, but not the other, bankers should be

selected from the latter. Suppose, e.g., Fa ⊂ F b. Then, since the welfare weights
16Essentiality means the IF set becomes bigger or better. By PE, we mean better, according to

(25). Also note that transfers cannot help here, since they make one group worse off, so we ignore
them.
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are the same, if the repayment constraint does not bind in group a at (xa
0, y

a
0) then

it cannot bind in b. This is shown in Figure 4 for a case in which (x∗, y∗) is not

feasible in either group. When d = 0,
�
xb
0, y

b
0

�
∈ P solves (25) for group b, but the

commitment problem is so severe in group a that (xa
0, y

a
0) /∈ P . Introducing d > 0

shifts in the repayment constraint for group b and shifts out the one for group a.

This has no effect on group b, since
�
xb
0, y

b
0

�
is still feasible, but makes group a better

off.

6.2 How Should We Monitor?

We now choose monitoring intensity, and thus endogenize δi. Assume monitoring in

group i with probability πi implies a utility cost πiki. Define a new benchmark with

d = 0 as the solution (xi, yi, πi) to

max
(x,y,π)

W i (x, y)− πki s.t. (x, y) ∈ F i and π ∈ [0, 1]. (27)

Notice the repayment constraint must bind, U1 (xi, yi) = δiρyi, since otherwise we

could reduce monitoring costs. Also notice that (x∗, y∗) is generally not efficient when

monitoring is endogenous, since reducing π implies a first order gain while moving

away from (x∗, y∗) entails only a second order loss.

Suppose for the sake of illustration that we want to minimize total monitoring

costs. For now, assume there is exactly one active type 1 agent, which means there

is a single candidate banker, in each group at each date. Obviously, if agents in one

group deposit with the other, we can reduce monitoring cost in the former only by

increasing it in the latter. Still, this may be desirable. In the Appendix we prove
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that if γb ≥ γa, λb ≥ λa and kb ≤ ka, then d > 0 may be desirable but d < 0 can

never be. Also, we show that when 1b has a big enough stake in the economy, he

should hold all the deposits, so that we can give up monitoring agents 1a entirely.

Proposition 4 Fix (xa, ya) and
�
xb, yb

�
. If γb ≥ γa

, λb ≥ λa
, and kb ≤ ka

, then

efficient monitoring implies δb < δa. Also, if γb > γ̄, defined in the proof, then

πa = 0.

Other applications of endogenous monitoring are available (see Mattesini et al.

2009). One can show, e.g., that d > 0 may be desirable even if 1a must compensate 1b

for increased monitoring costs. One can also consider the efficient number of bankers,

more generally. Fewer bankers reduce total monitoring cost, but this means more

deposits per bank, so that we might need to monitor them more rigorously. In fact,

even if there is only one group, if one considers asymmetric allocations, it can be

desirable to designate some subset of the type 1b agents as bankers, and concentrate

all monitoring on them. We leave further exploration of these ideas to future work.

6.3 Rate Of Return Dominance

To this point we assumed ρa = ρb, but, by continuity, of course deposits in group b

can be PE even if ρa > ρb. Heuristically, this explains why individuals keep wealth

in demand deposits, despite the existence of alternatives with higher yields: deposits

are better payment instruments. In other words, deposits are more liquid. Still,

there is an interaction between liquidity and return worth making precise. The next

result is also proved in the Appendix.
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Proposition 5 If d > 0 is PE when ρb = ρa, there exists ε > 0 such that d > 0 is

PE when ρb = ρa − ε. Deposits in group b are PE if δa > δ
a
, and either: (a) δb ≤ δ

b

and δaρ > (ρ− 1) u� �ρya
�
; or (b) δb > δ

b
and δaρ > δb + (ρ− 1) u� �ρya

�
, with the

thresholds δ
a
, δ

b
and ya defined in the proof.

6.4 Intermediated Lending

To this point banks undertake investments directly. In reality, although banks do

invest some deposits directly, they also lend to borrowers who then make invest-

ments. The reason this is worth mentioning is that once we introduce borrowers

explicitly, one may wonder how they can credibly commit to repay the bank but

not to depositors. What is the use of banks as intermediaries if depositors can lend

directly to investors? To address this, we now suppose there is a third group c, as

well as a and b. For illustration, all parameters are the same across groups, except

πb > πc > πa = 0. Also, ρa = ρb = 1, and in all groups, U1 (x, y) = u (x) − y

and U2 (y, x) = u (y) − x. To incorporate lending, agents in group c have a special

technology f (I) that requires at least Ī units of good ya. Precisely, for I < Ī we

have f (I) = 0, and for I ≥ Ī, we have f (I) = αI with α > 1.

All is well if the minimum investment Ī is small. But when it is large, Ī may be

too expensive for a single group a agent to lend to a group c investor. Absent other

frictions, the solution is to have many 1a agents lend to a given group c investor. But

suppose we add an additional friction, that agents in group c can meet at most n

other agents each period.17 Now direct lending may fail, as 1a would have to produce
17We do not regard this as particularly deep; it is simply an example to show how other frictions
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enough ya to meet the minimum investment threshold, which may not be worthwhile.

And since πa = 0, it is impossible for group a lenders to pool their resources, and

have one agent 1a lend it all to some agent 1c, since the designated 1a agent would

certainly run off with the proceeds. Here is where intermediated lending can help:

a trustworthy agent 1b collects resources from many agents 1a, and lends them to

a 1c investor. Delegating lending through a bank allows us to meet the minimum

investment level, despite commitment problems within group 1.

To fill in the details, first, note that πa = 0 implies group a cannot consume

at all without deposits. In principle, 1a could deposit resources with 1b for direct

investment, but it may be desirable for 1b to lend the deposits to 1c, if f(·) constitutes

a better opportunity. When group a lends d = ya directly to group c, the relevant

incentive constraints for group a are

u (xa)− ya ≥ 0 and u (αya)− xa ≥ 0.

Similarly, for b and c,

u
�
yb
�
− xb ≥ 0 and u

�
xb
�
− yb ≥ δbyb

u (yc)− xc ≥ 0 and u (xc)− yc ≥ δc (αñya + yc) ,

where ñ ≤ n is the number of agents 1 in group a pooling their resources for lending,

with ñya ≥ Ī. Since an agent 1c can meet at most n agents, assuming symmetry,

the minimum resources that each 1a must commit is Ī/n. If u
�
αĪ/n

�
< Ī/n, this is

too large for direct lending group a to be viable.

can interact with limited commitment.
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With intermediated lending, the relevant constraints are the same for group a,

but now for group b they are

u
�
yb
�
− xb ≥ 0 and u

�
xb
�
− yb ≥ δb

�
yb + n̂ya − d+ αd

�
.

The total amount received by banker 1b from n̂ agents in group a is n̂ya, of which

he lends d ≤ n̂ya to agents in group c. In the second subperiod, these loans return

αd. Given he also invests yb for agents in his own group, his repayment constraint is

as given above. For group c the relevant constraints are

u (yc)− xc ≥ 0 and u (xc)− yc ≥ δc (αñd+ yc) ,

where ñd ≥ Ī, and ñ ≤ n is the number of bankers lending d to an investor. If ñ > 1,

the minimum investment is Ī/ñn < Ī/n.

For ñ large, u
�
αĪ/ñn

�
> Ī/ñn, and the IF set for group a contains points

other than autarky. The smaller is δb, the larger we can set ñ. We conclude that

intermediated lending can be PE, if we add additional frictions, and in particular if

there is a large fixed investment Ī. This is reasonable, since firms often need funds

beyond what a single lender can provide. Moreover, a single lender may not want

the risk exposure implied by single large investment, although we do not model this

explicitly. The point is that we can extend the framework to explain how banks

usefully intermediate between depositors and investors, based in part on limited

commitment, and in part on other frictions.
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7 Nonstationary Allocations

So far, we have restricted attention to stationary allocations. One might suspect

that relaxing stationarity could be good for incentives, and if this works too well,

deposits may no longer be PE. Clearly, this is not true in general – e.g., if πa = 0

then the only IF allocation in group a with d = 0 is autarky, and so it seems obvious

that d > 0 can be PE. But it would be good to know how the results are affected,

by relaxing stationarity, more generally. This is the issue studied here. We assume

ρ = λ = γ = 1, for this exercise, mainly to ease the presentation, and start with a

single group.

To begin, we identify three points of reference. Let (x, y) be the stationary

allocation given by the intersection of the stationary Pareto set P with 1’s stationary

repayment constraint, and let V 1 = U1(x, y)/(1− β) be the associated payoff for 1.

Let (x̄, ȳ) be the intersection of P with 2’s stationary participation constraint and

V̄ 1 = U1(x̄, ȳ)/(1 − β). Let (x̂, ŷ) �= (0, 0) be the intersection of 1’s stationary

repayment constraint with 2’s participation constraint and V̂ 1 = U1 (x̂, ŷ) / (1− β).

Figure 5 shows these reference points for two cases, with the same preferences, but

in the left panel the stationary repayment constraint is loose, which implies x̄ < x̂,

and in the right it is tight, which implies x̄ > x̂. On the left, we show 1’s indifference

curves associated with V 1 and V̄ 1, but not V̂ 1, since the latter does not play a role

when the repayment constraint is loose; on the right, we show 1’s indifference curves

associated with V̂ 1, which is relevant when repayment is tight.
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For a single group, consider the recursive Pareto problem

V 2(V 1) = max
x,y,V 1

+1

U2 (y, x) + βV 2(V 1
+1) (28)

s.t. V 1 = U1 (x, y) + βV 1
+1 (29)

βπV 1
+1 ≥ y (30)

V 2(V 1
+1) ≥ 0, (31)

where the subscript on V 1
+1 indicates next period. The objective is to maximize

V 2 taking as given V 1, where of course we only consider V 1 ≥ 0, to satisfy 1’s

participation constraint at the initial date. Constraint (29), often called “promise

keeping” in the literature, is the law of motion for V 1; (30) is the dynamic repayment

constraint for 1; and (31) is the dynamic participation constraint for 2, guaranteeing

he does not defect next period. This problem is complicated by the fact that the

value function V 2 appears in the constraint (31), rendering it a nonstandard dynamic

program. But, using standard methods,18 we can replace (31) with V 1
+1 ≤ Ṽ 1, where

Ṽ 1 is the largest payoff we can give to type 1 such that the problem has a solution

with V 2 ≥ 0. Note that V 2(Ṽ 1) = 0.

Given this, one can determine the upper bound Ṽ 1 explicitly, and characterize the

dynamic outcome as a function of the initial condition V 1
0 , for two cases depicted by

the two situations in Figure 5. Proofs of the next two Propositions, which constitute

the main technical contribution of the paper, are somewhat lengthy and so we put

them in the Appendix.
18These techniques go back to Thomas and Worrall (1988); see Ljungqvist and Sargent (2004)

for a textbook treatment.
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Proposition 6 Suppose x̄ < x̂ (repayment loose). Then the upper bound is Ṽ 1 = V̄ 1
.

If V 1
0 ∈ [V 1, V̄ 1], the efficient allocation is stationary at the intersection of P and the

indifference curve U1 (x, y) = (1 − β)V 1
0 . If V 1

0 ∈ [0, V 1) the efficient allocation is

nonstationary, V 1
t is strictly increasing in t until it converges to some V 1

∞ ∈ [V 1, V̄ 1],

and (30) is binding during the transition.

Proposition 7 Suppose x̄ > x̂ (repayment tight). Then the upper bound is Ṽ 1 = V̂ 1
.

If V 1
0 = V̂ 1

the efficient allocation is stationary at (x̂, ŷ). If V 1
0 ∈ [0, V̂ 1) the efficient

allocation is nonstationary, V 1
t is strictly increasing in t and converges to V 1

∞ = V̂ 1
.

In either case, V 1
0 = V̂ 1

or V 1
0 < V̂ 1

, (30) is always binding.

In terms of economics, suppose the stationary repayment constraint is loose.

Then, if we want to treat 1 well at the initial date, in the sense that V 1
0 ≥ V 1, the

efficient outcome is stationary; and if we want to treat him less well, in the sense

that V 1
0 < V 1, then V 1

t increases with t. In the latter case, the efficient way to

encourage repayment is to backload 1’s rewards. In practice, this can take the form

of offering small loans at high interest at the beginning, followed by larger loans at

better terms. Intuitively, it is wasteful to give 1 a stationary payoff high enough to

discourage misbehavior, since over time past rewards become sunk, and no longer

affect incentives. This does not matter if we want to treat 1 well, but if we want to

treat him less well, it is better to give him an increasing sequence of utilities. But V 1
t

cannot increase indefinitely, since we have to satisfy 2’s participation, so V 1
t → V 1

∞.

In the other case, when the stationary repayment constraint is tight, except for the

extreme case V 1
0 = V̂ 1 the outcome is always nonstationary, backloading 1’s rewards
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for the same reason. Also note that, in either case, the dynamic repayment constraint

always binds along the transition path.

The above results fully characterize the solution with one group. With two groups,

there are several possibilities. First, suppose repayment is loose in both, and in group

a the initial condition is V 1a
0 < V 1a while in b it is V 1b

0 > V 1b. Ignoring deposits, from

Proposition 6, the efficient allocation is stationary and unconstrained by repayment

in b, while it is nonstationary and constrained in a. It is obvious that in this case d > 0

is PE, since deposits relax a binding constraint for a without affecting b. Indeed,

we can set d = d̄, so that the repayment constraint just binds for b, and get the

maximum slack for a. The resulting allocation for a may now be stationary. To see

this, notice that d > 0 rotates the repayment constraint in Figure 5, moving (xa, ya)

to the northwest along Pa and lowering V 1a = U1(xa, ya)/ (1− β). This may reverse

the inequality V 1a
0 < V 1a, making the efficient allocation for a stationary. Hence,

if we have enough slack in group b, by letting type 1b be the banker for 1a we can

relax the latter’s constraints so that we no longer need backloading. Even if d̄ is not

big enough to reverse V 1a
0 < V 1a, so we still need backloading, deposits are still PE

because they slacken repayment for a along the transition.19

So far we assumed V 1b
0 > V 1b. We can also have V 1i

0 < V 1i for i = a and i = b,

with a nontrivial transition for both groups. Now the problem is more intricate, but
19One has to be slightly careful with this case. Proposition 6 says the transition in group a

takes us to V 1a
∞ ∈ [V 1a, V̄ 1a], and it is important to note that we can get there in finite time, and

can end up in the interior of the interval (since in discrete time we jump a finite distance at each
step). Once we get to V 1a

∞ , if it is interior, then from Proposition 6 one might think repayment is
no longer binding and hence d > 0 is no longer PE. But this is not right, since repayment is no
longer binding only because we have d > 0.
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it seems clear that dt > 0 cannot be PE for all t since this only slackens repayment

in one group at the expense of the other. However, dt > 0 may be PE at some t

in the future. Thus, over time V 1b
t → V 1b

∞ , and suppose we get there in finite time,

before V 1a
t converges. If repayment no longer binds in group b, but is still binding in

a, it is efficient to set d > 0 since it will not hurt b. There is also the case where the

repayment constraint is tight for both groups, or tight for one and loose for the other.

In general, there are nontrivial transitions, and dynamically efficient allocations can

be complicated. But the goal here is to show that d > 0 can be PE, not that d > 0

is always PE. This has been established. While there is much more one can do with

this model, in terms of both theory and quantitative work, we leave that to future

research.

To summarize the main point, consider what we think of as the leading case: in

group b, repayment is loose and V 1b
0 > V 1b, so the efficient outcome is stationary;

in group a, repayment is either loose and V 1a
0 < V 1a, or repayment is tight, both of

which imply backloading for 1a. Then we can set d = d̄ > 0, so repayment just binds

in group b, and relax the constraint for a. In the case where in group a repayment

is loose and V 1a
0 < V 1a, this may reverse the inequality and render the outcome

stationary. This means that banking may replace backloading. In any case, d = d̄

relaxes constraints for group a. Also, notice that we can do no better if we use a

nonstationary banking scheme: setting dt = d̄ for all t maximizes slack in group a.

We are not saying the optimal dt must be constant, and if it were, e.g., costly to use

deposits, one might want dt to decline over time. But absent ad hoc reasons, there is
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nothing to gain from nonstationary dt. At least, this is so in the leading case where

repayment is loose and the efficient outcome is stationary in group b.

We close this Section by mentioning that this model, while bearing some similarity

to other dynamic models with incentive problems, e.g., Atkeson and Lucas (1992),

also has some interesting differences. In particular, our model does not lead to

immiseration, where a small set of agents eventually end up with the entire surplus.

In any case, we collect some of the main results here as follows:

Proposition 8 Consider optimal allocations with dt = 0, and suppose that at t = 0

the repayment constraint does (does not) bind for group a (group b). Then dt = d̄ > 0

for all t is PE, and we can do no better by having dt vary with t. Given dt = d̄,

the efficient dynamic allocation is stationary for b, and can either be stationary

or nonstationary for a, depending on whether d̄ lowers V 1a
enough to reverse the

inequality V 1a
0 > V 1a

.

8 A Brief History of Banking

Above we have presented some theory and a variety of applications of the abstract

model. Now we compare the results with some facts from banking history. First,

as regards abstracting from outside money, this seems reasonable from the historical

perspective, since institutions that accepted commodity deposits were operating long

before the invention of coinage, let alone fiat currency. As Davies (2002) describes

the situation, in ancient Mesopotamia and Egypt, goods were often deposited in

palaces or temples, and later, private houses.
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Grain was the main form of deposits at first, but in the process of time
other deposits were commonly taken: other crops, fruit, cattle and agri-
cultural implements, leading eventually and more importantly to deposits
of the precious metals. Receipts testifying to these deposits gradually led
to transfers to the order not only of depositors but also to a third party.
In the course of time private houses also began to carry on such deposit
business ... The banking operations of the temple and palace based banks
preceded coinage by well over a thousand years and so did private banking
houses by some hundreds of years.

Importantly, deposit receipts were transferrable, and hence facilitated transac-

tions and payments, as in the model. In ancient Babylon, also, as Ferguson (2008)

says:“Debts were transferable, hence ‘pay to the bearer’ rather than a named creditor.

Clay receipts or drafts were issued to those who deposited grain or other commodities

at royal palaces or temples.”And, also as in the model, “the foundation on which all

of this rested was the underlying credibility of a borrower’s promise to repay.”This

is, of course, exactly what the model was designed to capture.

In his discussion of medieval Venetian bankers, Mueller (1997) describes two types

of deposits: regular, which were actual goods that bankers had to deliver on demand;

and irregular, involving specie or coins that only had to be repaid with the same

value, but not the same objects. The former were like modern-day safety-deposit

boxes; the latter were more like demand deposits, and involved a tacit agreement

that the banker would invest the resources. When one puts one’s money in a mod-

ern bank account, one usually does not expect to withdraw the same money, only

something of appropriate value. This is true in the model, too: a bank’s liability is

not the deposit per se, but the returns on investments. Because they are making
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investments, banks are more than mere storage facilities, although safekeeping may

have something to do with it. Consider the English goldsmiths, who many regard

as the first modern bankers (Joslin 1954; Quinn 1997; Selgin 2010). Originally they

offered depositors mainly security, but early in the 17th century their deposit receipts

began circulating in place of cash for payments, the first incarnation of banknotes;

shortly after, deposits could be transferred by drawn note (checks).20

Institutions of the type modeled here – i.e., acceptors of commodities on deposit

that end up facilitating transactions – were common well after the emergence of mod-

ern banking. In colonial Virginia, e.g., tobacco was commonly used in transactions

because of the scarcity of precious metals, and the practice of depositing tobacco

in public warehouses and then exchanging certificates, attesting to its quality and

quantity, survived for over 200 years (Galbraith 1975). Similarly, in the 19th century,

to facilitate transactions and credit arrangements between cocoon producers and silk

weavers, warehouses commonly stored dried cocoons or silk and issued warrants that

could be used to pledge for credit. The first of these warehouses was funded by a

group of entrepreneurs in Lyons in 1859, and later imitated by a series of Italian

banks (Federico 1997). What we take away from these examples is that a very im-

portant feature of much early, and some more modern, deposit banking is that claims

on deposits were used to facilitate exchange.
20Although many say goldsmiths were the first modern bankers, others mention the Templars

(Weatherford 1997), who during the crusades specialized in moving and protecting money and other
valuables. But it is not clear if their liabilities circulated as a means of payment, the way goldsmiths’
receipts did. Some say that, before the goldsmiths, transferring funds from one account to another
“generally required the presence at the bank of both payer and payee”(Kohn 1999; see also Quinn
2004). Even so, deposits facilitated payments. On checks, Spufford (1988) says the Florentines
were using these as early as 1368.
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In Venice, Mueller (1997) says deposit banking served“a function comparable to

that of checking accounts today ... not intended primarily for safekeeping or for

earning interest but rather as a means of payment which facilitated the clearance of

debts incurred in the process of doing business. In short, the current account con-

stituted ‘bank money,’ money based on the banker’s promise to pay.”Of course, this

only works if bankers are trustworthy. The medieval Rialto banks offer evidence con-

sistent with this: “Little capital was needed to institute a bank, perhaps only enough

to convince the guarantors to pledge their limited backing and clients to deposit their

money, for it was deposits rather than funds invested by partners which provided

bankers with investable capital. In the final analysis, it was the visible patrimony

of the banker – alone or as part of a fraternal compagnia – and his reputation as an

operator on the market place in general which were placed on the balance to offset

risk and win trust”(Mueller, p.97, emphasis added).

Many bankers historically started as merchants, who almost by definition have

a big connection to the market. The great banking families in Renaissance Italy

and Southern Germany in the 16th century were originally merchants, who began

lending their own capital, and then started collecting deposits from other merchants,

nobles, clerics and small investors. They were not the richest individuals: wealth was

then concentrated in the hands of landowners, who controlled agriculture, forests and

mineral rights. But merchants arguably had the most to lose in terms of reputation

from reneging on obligations: “because commerce involved the constant giving and

receiving of credit, much of a merchant’s effort was devoted to ensuring that he could
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fulfill his own obligations and that others would fulfill theirs.”(Kohn 1999). Further

evidence on the bankers having a big connection to the market is given by Pressnell

(1956) in its study of early English country banks during the Industrial Revolution:

almost all of these emerged as a by-product of some other economic activity, often

some kind of manufacturing.

Bankers also were subject to some kind of monitoring, like we emphasized in the

model. For instance, “to maintain ‘public faith,’ the Senate in 1467 reminded bankers

of their obligation to show their account books to depositors upon request.”(Mueller,

p.45). If caught cheating, the punishment was indeed lifetime banishment from Vene-

tian banking, but this apparently happened rarely in history (like in the model).

Going back to Roman times, Orsingher (1967) observes: “One of the most important

techniques used by Roman bankers was the use of account books analogous to those

which all citizens kept with scrupulous care. This account-book was called a Codex

and was indispensable in drawing up contracts .... A procedure peculiar to bankers

deserves to be noted: the ‘editio rationum’ or production of accounts. Anyone run-

ning a bank could be compelled at a moment’s notice to produce his accounts for his

clients’, or even for a third party’s, inspection.”

Once again returning to Venice:

In the period from about 1330 to 1370, eight to ten bankers operated
on the Rialto at a given time. They seem to have been relatively small
operators on average... Around 1370, however, the situation changed
[and] Venetian noble families began to dominate the marketplace. After
the banking crisis of the 1370s and the War of Chioggia, the number of
banchi di scritta operating at any given time on the Rialto dropped to
about four, sometimes as few as three. These banks tended, therefore, to
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be larger and more important than before. (Mueller, p. 82)

We also tried to formalize issues concerning the efficient number of bankers, revolving

around credibility vs. size, since obviously a bank can be “too big not to fail.” To

summarize the general point, while we are not experts on history, this evidence on

the whole seems to illustrate how the model is broadly consistent with the facts.

Finally, in terms of more recent history, what about banking panics and the

recent financial crisis? Gorton (2010) argues the crisis was a wholesale panic, where

some financial firms ran on others by not renewing repurchase agreements, similar

to commercial bank customers withdrawing deposits. The location of subprime risk

was unknown, depositors were confused, and consequently ran. Our approach is

too stylized to capture all the intricacies, but we can use it to think about the big

picture. Suppose the probability of being active each period γ is subject to shocks,

and uncertainty surrounding these shocks can induce agents to reduce deposits to

re-establish incentives. Such shocks depend on the nature of business, e.g., γ could

be affected by housing markets if one’s business is originating mortgage loans. As γ

goes down, banking works less well, but this is as it should be: when the frictions

increases it can be efficient for credit to dry up. We do not claim recent events were

not problematic; only that may be is interesting to look at them through the lens

this model.
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9 Conclusion

We began by specifying preferences, technologies, and frictions, including imper-

fect commitment and monitoring. We then examined incentive-feasible and efficient

outcomes, and tried to interpret these in terms of arrangements observed in actual

economies. The model illustrates how it can be desirable for some agents to perform

certain functions resembling banking: they accept deposits, they invest or make loans,

and their liabilities facilitate transactions among other parties. Banking is essential:

without it, the set of feasible allocations is inferior. We showed how to implement

good outcomes using circulating bank liabilities. Also, it helps if banks offer high

interest rates, but it can also be efficient to sacrifice return for trust. We explored

various other issues, such as endogenous monitoring and intermediated lending. We

also solved for efficient dynamic credit allocations, showed how they generally can

entail backloading, and discussed how this interacts with banking. Finally, we dis-

cussed some history related to the theory. This is all in the spirit of what is called

the New Monetarist approach.

The framework can be generalized to analyze other commonly-discussed phenom-

ena, e.g., the tendency of banks to borrow short and lend long. We concentrated

on different issues, like deriving a set of characteristics that make for good bankers.

Other extensions and applications are available. In a companion paper (Gu et. al.

2012) using exactly the same environment, instead of studying incentive-feasible and

efficient outcomes, we impose various alternative solution concepts – e.g., Walrasian

pricing or Nash bargaining – and study decentralized equilibria. We show that it is
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possible, indeed easy, for these economies to exhibit complicated endogenous dynam-

ics, including cyclic, chaotic and stochastic (sunspot) equilibria. In all of these cases,

market activity fluctuates over time, either deterministically or randomly, based on

self-fulfilling prophecies concerning credit conditions. Based on this, we think the

framework provides an interesting setting in which to analyze credit markets, gener-

ally, and not just banking.

We close with a question Ken Burdett asked about the paper: Should we be

surprised by a theory that predicts it is efficient to put agents into occupations they

are good at? If the occupation is, say, singing, it is obvious that people with good

range, pitch, timbre etc. are right for the job. That is different, however, since we

can all agree that music and hence musicians give people direct utility. But no one

likes bankers, just like no one likes dollars, for their own sake. People like money

for what it does, and we think it is useful to explain what makes a particular object

an efficient or an equilibrium medium of exchange, not just assume it enters in a

particular ad hoc way into preferences or constraints. Similarly, if we want to study

banking, we think it is useful to have a theory that is explicit about the frictions

that give rise to a role for banks in the first place. For us, this project was a step in

that direction.
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Appendix
Proof of Proposition 4: Since γb > γa, it must be that U1

�
xb, yb

�
≥ U1 (xa, ya).

With deposits d, and since there is one candidate banker in each group, the repayment

constraint in group b becomes −λbρ
�
yb + d

�
+ πbγbU1

�
xb, yb

�
/r = 0, where r =

β/ (1− β). Therefore, we obtain

∂πb

∂d
=

rλbρ

γbU1 (xb, yb)
.

The repayment constraint in group a is −λaρ (ya − d) + πaγaU2 (xa, ya) /r = 0, so

that
∂πa

∂d
= − rλaρ

γaU1 (xa, ya)
.

Increasing deposits from group a to b reduces the overall monitoring cost πaka+πbkb

since
∂πa

∂d
ka +

∂πb

∂d
kb = r

�
λbkbρ

γbU1 (xb, yb)
− λakaρ

γaU1 (xa, ya)

�
< 0,

where the inequality follows from U1 (xa, ya) ≤ U1
�
xb, yb

�
, γa ≤ γb and kb ≤ ka.

Hence, starting from d = 0, only d > 0 can reduce total monitoring cost.

To prove the second part let (x̆a, y̆a) solve maxW a (x, y), s.t. the participation

constraint for 2a only. If

π̄ ≡
rλb

�
yb + y̆a

�

γbU1 (xb, yb)
≤ 1

then it is optimal to set πb = π̄, d = y̆a, and πa = 0. Then γ̄ is defined as

γ̄ ≡
rλb

�
yb + y̆a

�

U1 (xb, yb)
.

This completes the proof. �
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Proof of Proposition 5: Consider an example with U1 = x− y, U2 = u (ρy)− x,

γa = γb, λa = λb = 1, ω1 = ω2 = ω, and ρa = ρ > 1 = ρb . Given ρ > 1, we can

have δ
a
< δ

b, so that (x∗,a, y∗,a) is feasible in group a but
�
x∗,b, y∗,b

�
is not feasible in

group b. Here we focus on the case where deposits in group b are PE. The condition

δa > δ
a implies that y∗,a is not IF in group a, so that deposits potentially have a

role. Consider the situation in group b. In the first Case (a), agents in group b do

not have a commitment problem because δb ≤ δ
b, although they do have inferior

storage technology. Therefore, making deposits in group b requires agents in group a

produce more to make up for a lower return to sustain a given level of consumption.

The condition δaρ > (ρ− 1) u� �ρya
�

insures that δa is high enough so that d > 0 is

PE. Case (b) is similar, except agents in group b have a binding repayment constraint

when δb > δ
b. Therefore they need to be compensated for taking deposits to prevent

default. A transfer from group a does just that, but it comes on top of the additional

production required from group a to cover for the loss in return. Hence, d > 0 is

PE if δaρ > δb + (ρ− 1) u� �ρya
�
, which is stricter than Case (a). Finally, if the

commitment problem in group a is very severe, u� �ρya
�

will be large. In this case, if

the investment technology in group a improves, their commitment problem must be

worse for d > 0 to be PE.

The planner’s problem with no interaction between groups is given by (25). The

first best is y∗i solving ρiu�(ρiy∗,i) = 1. Denote by yi, the level of yi that satisfies the

repayment constraint at equality given δi. Also, Define δi by [u(ρiy∗,i)− y∗,i] / (ρiy∗,i) =

δi as the level above which the repayment constraint binds in group i at y∗,i. The
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next two claims establish the result.

Claim 1: Deposits in group b are PE if

δa > δ
a, δb ≤ δ

b and δaρ > (ρ− 1) u� �ρya
�
.

Proof: Note that given xa
2 and d, agents 1a has to produce ya such that xa

2 =

(ya − d) ρ+ d. The repayment constraint is

u [(ya − d) ρ+ d]− ya

ρ
≥ δaρ (ya − d) .

To show deposits in group b are PE, we show increasing d relaxes the repayment

constraint in group a. Hence it must be that at the allocation ya

(1− ρ) u� [(ya − d) ρ+ d] + δaρ > 0

δaρ > (ρ− 1) u� [(ya − d) ρ+ d]

So d > 0 is PE at ya iff δaρ > (ρ− 1) u� �ρya
�
, establishing the claim. �

Claim 2: Deposits in group b are PE if

δa > δ
a, δb > δ

b and δaρ ≥ δb + (ρ− 1) u�
�
ρya

2

�
.

Proof: When δb > δ
b, the solution to (25) in group b is yb. Deposits are incentive

compatible only if agents 1a make a transfer τ to agents 1b. The repayment constraint

in group b with τ and d, evaluated at yb, is u(yb)−yb+τ ≥ δb
�
yb + d

�
. By definition,

u(yb)−yb = δbyb and the minimum transfer τ that satisfies the constraint is τ = δbd.

The repayment constraint in group a is

u [(ya − d) ρ+ d]− ya

ρ
− τ ≥ δaρ (ya − d) .
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Substituting τ = δbd, we get

u [(ya − d) ρ+ d]− ya

ρ
− δaρya +

�
δaρ− δb

�
d ≥ 0,

so the repayment constraint is relaxed whenever δaρ−δb ≥ (ρ− 1) u� [(ya − d) ρ+ d].

Evaluating at ya
2
, δaρ− δb ≥ (ρ− 1) u�

�
ρya

2

�
. This establishes the claim, and there-

fore completes the proof. �

Proof of Propositions 6-7: Problem (28) is a dynamic contracting problem with

two-sided lack of commitment, and is solved using results of Thomas and Worrall

(1988). These deliver the following: ∃�V 1 such that V 2
�
�V 1

�
= 0; V 2 (V 1) ≥ 0 iff

V 1 ≤ �V 1; and V 2 (V 1) is decreasing, strictly concave and continuously differentiable.

Hence, we can rewrite (28) as

V 2(V 1) = max
x,y,V 1

+1

U2 (y, x) + βV 2(V 1
+1) (32)

s.t. (29), (30) and �V 1 ≥ V 1
+1,

where we replace (31) by �V 1 ≥ V 1
+1 (We also need V 1

+1 ≥ 0, but that is redundant

given the repayment constraint βπV 1
+1 ≥ y.) We eventually determine �V 1, but first

we solve (32) taking it as given. Letting µ1, µ2 and µ3 be multipliers on (29), (30)

and �V 1 ≥ V 1
+1, necessary and sufficient conditions for a solution are

0 = U2
x (y, x) + µ1U

1
x (x, y) (33)

0 = U2
y (y, x) + µ1U

1
y (x, y)− µ2 (34)

0 = βV 2� �V 1
+1

�
+ βµ1 + βπµ2 − µ3. (35)

The envelope condition is V 2� (V 1) = −µ1, which combines with (35) to yield

0 = βV 2� �V 1
+1

�
− βV 2� �V 1

�
+ βπµ2 − µ3. (36)
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Given �V 1, we consider separately: (1) �V 1 > V 1; and (2) �V 1 ≤ V 1.

Case 1: �V 1 > V 1. We describe the solution to (32) as a function of V 1 ≥ 0. There

are three possibilities: (1a) V 1 ∈ [0, V 1); (1b) V 1 ∈ [V 1, �V 1]; and (1c) V 1 > �V 1. We

first need the following:

Claim 3: In Case 1, the solution to (32) is stationary if and only if V 1 ∈ [V 1, �V 1].

Proof: First assume the solution is stationary, which means V 1
+1 = V 1. By (36),

V 1
+1 = V 1 implies either: µ2 = µ3 = 0 or µ2, µ3 > 0. Suppose µ2, µ3 > 0. Since

µ2 > 0 and the solution is stationary, (x, y) is on the stationary repayment constraint,

and it is to the left of P by virtue of (33)-(34). Type 1’s payoff associated with this

allocation is V 1 = V 1
+1 < V 1. However, µ3 > 0 implies V 1 = V 1

+1 = �V 1. This is a

contradiction, since we are in Case 1, where �V 1 > V 1.

So we cannot have µ2, µ3 > 0, and we must have µ2 = µ3 = 0. Then (33)-(34)

imply (x, y) ∈ P , and given stationarity, we can combine (29) and (30) to yield the

stationary repayment constraint. Type 1’s payoff thus satisfies V 1 ≥ V 1, since by

definition V 1 is the payoff associated with the point where the stationary repayment

constraint intersects P . Also, given stationarity, U1 (x, y) / (1− β) = V 1 = V 1
+1 ≤

�V 1. This establishes that stationarity implies V 1 ∈ [V 1, �V 1].

To show the converse, start by assuming V 1 ∈ [V 1, �V 1], and recall that (29), (30),

V 1
+1 ≤ �V 1, (33), (34) and (36) are necessary and sufficient for (32). Set µ2 = µ3 = 0

and µ1 = −U2
x/U

1
x . Set V 1

+1 = V 1. Let (y, x) be the point on P where U1 (y, x) =

(1− β)V 1. Then all of the relevant conditions are satisfied. Hence, V 1 ∈ [V 1, �V 1]

implies stationarity. This establishes Claim 3. �

47



Return to the analysis of (32) in Case 1, consider first (1a).

Claim 4: In Case (1a) V 1
+1 > V 1.

Proof: Now V 1 ∈ [0, V 1). Suppose by way of contradiction that V 1
+1 ≤ V 1. First

suppose V 1
+1 < V 1. This implies µ3 > 0, by the strict concavity of V 2 and (36).

But µ3 > 0 implies V 1
+1 = �V 1, and we have �V 1 > V 1 since we are in Case 1. Thus

V 1
+1 = �V 1 > V 1, which contradicts V 1

+1 < V 1, since V 1 < V 1 in Case (1a). Now

suppose V 1
+1 = V 1. This contradicts Claim 3, which tells us that the solution is

stationary if and only if V 1 ∈ [V 1, �V 1], and in Case (1a) V 1 ∈ [0, V 1). So cannot

have V 1
+1 ≤ V 1. �

Now consider Case (1b), V 1 ∈ [V 1, �V 1]. By Claim 3 we know the solution is

stationary and (x, y) is given by the intersection of P and U1 (x, y) = (1− β)V 1.

Finally, consider Case (1c), where V 1 > �V 1. This implies µ3 > 0 by (36). Therefore

V 1
+1 = �V 1, and after one period we are back to Case (1b), although as we show below,

this cannot happen once we endogenize �V 1. In any event, we we are done with Case

1, and proceed to:

Case 2: �V 1 ≤ V 1. The following possibilities are now relevant: (2a) V 1 < �V 1; (2b)

V 1 = �V 1; and (2c) V 1 > �V 1. We need the following:

Claim 5: In Case 2, the solution to (32) is stationary if and only if V 1 = �V 1.

Proof: To verify this, note that one can show that if the allocation is stationary then

V 1 = �V 1 following the proof of Claim 3. To show the converse, assume V 1 = �V 1.

Again, the first-order conditions are necessary and sufficient. It is easy to check

that these are satisfied by V 1
+1 = V 1 = �V 1, an allocation (x, y) solving U1 (x, y) =
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(1− β) �V 1 and y = βπ�V 1, and multipliers µ1, µ2 and µ3 given by the first-order

conditions. This establishes Claim 5. �

We now return to (32). In Case (2a), where V 1 < �V 1, V 1
+1 > V 1 by an argument

is similar to Case (1a). In Case (2b), where V 1 = �V 1, Claim 5 establishes V 1
+1 = �V 1

and the allocation is stationary. In Case (2c), where V 1 > �V 1, V 1
+1 = �V 1 by an

argument is similar to Case (1c), but we also show below that this cannot happen

once we endogenize �V 1. This completes the analysis of the solution to (32) for an

arbitrary �V 1 ≥ 0.

We now need to find the value of �V 1 that makes (32) equivalent to (28) – i.e., we

seek a solution to V 2
�
�V 1

�
= 0. We consider separately the two possibilities shown

in Figure 5: a loose stationary repayment constraint, where V 1 < V
1; and a tight

one, where V 1 > V
1.

Loose: x < �x. We claim �V 1 = V
1. To verify this, from the above results we

know that V 1 = �V 1 implies the optimal allocation is stationary. Given the allocation

is stationary, V 2 (V 1) = U2 (y, x) / (1− β), and we only need to find the stationary

solution to U2 (y, x) = 0. This is the (y, x) that occurs at the (nonzero) intersection

of the indifference curves U2 (y, x) = 0 and U1 (y, x) = V
1 in Figure 5. Hence, with

a loose repayment constraint �V 1 = V
1. It is obvious from Figure 5 that V 1 < V

1 is

equivalent to x < �x. This establishes Proposition 6.

Tight: x > �x. We now claim �V 1 = �V 1, using a similar argument. If we set V 1 =

�V 1 then the optimal allocation is stationary. Thus, we need to find the best point

(x, y) for 1 consistent with U2 (y, x) = 0 and the stationary repayment constraint.
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From the right panel of Figure 5, this is given by the intersection of participation

constraint and repayment constraint, which is V 1 = �V 1. Again, it is clear from the

Figure that V 1 > V
1 is equivalent to x > �x. This establishes Proposition 7. �
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