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Abstract

Emissions trading mechanisms have been proposed, and in some cases implemented, as a tool to
reduce pollution. We note that emission-trading mechanisms resemble monetary mechanisms
in at least two ways. First, both attempt to implement desirable allocations under various
frictions, including risk and private information. Second, in both cases implementation relies
on the issue and trading of objects whose value is at least partially determined by expectations,
namely (Öat) money and permits, respectively. We use insights from dynamic mechanism design
in monetary economics to derive properties of optimal dynamic emissions trading mechanisms.
We argue that e¢cient tax policies must be state-contingent, and we demonstrate an equivalence
between such state-contingent taxes and emissions trading. Restrictions resulting from the
money-like feature of permits can break this equivalence when there is endogenous progress in
clean technologies. We argue that these restrictions must be taken into consideration in actual
policy implementation.

PRELIMINARY DRAFT. First version: September 2010. We thank participants at the Environmental
Economics and Law Conference at the University of Bern, the CESifo Area Conference on Energy and Climate
Economics 2011, and Rice University for comments.
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1 Introduction

Under an emissions trading system (also known as cap-and-trade), producers must acquire per-
mits equal to the amount of their emissions in a given period. These permits are then remitted
to the issuing institution.1 So far, the results from actual implementations of emissions trading
have been mixed, and some policy-makers have argued that taxes would be more e§ective in
reducing emissions. Similar criticisms have also appeared in related academic studies. In a
highly publicized recent study, ClÚ and Vendramin (2012) criticized features of the ETS that
have led to low prices for permits. They also point out shortcomings, speciÖcally in regard to the
ability of emissions trading to induce investment in new technologies. They instead advocate
a tax as a more e§ective non-distortionary instrument leading to price stability and increased
clean investments. In a related study, Blyth, Bradley, Bunn, Clarke, Wilson, and Yang (2007)
investigate how environmental policy uncertainty a§ects investment in low-emission technolo-
gies in the power-generation sector. In their model, Örms can choose from di§erent irreversible
investments. They Önd that price uncertainty decreases clean investments. Chen and Tseng
(2011) Önd that investment can be used to hedge against price risk, and it increases with un-
certainty. In all these models the price of permits is treated as exogenous. Colla, Germain,
and Van Steenberghe (2012) endogenize the price of the permits and study optimal policy in
the presence of speculators. Finally, in a recent working paper, Albrizio and Silva (2012) in-
troduce uncertainty over the exogenous policy rule, as well as the possibility of reversible and
irreversible investments by Örms. Li and Shi (2010) use a static general equilibrium model to
compare regulatory emission standards and emission taxes as alternative tools for controlling
emissions in a monopolistically competitive industry with heterogenous Örms. They Önd that
an emissions standard results in higher welfare than taxes if and only if productivity dispersion
among Örms is small and dirty Örms enjoy a high degree of monopoly power.
Our analysis introduces several ingredients that are largely missing in the existing literature.

First, if the policy objective is to maximize social welfare, as opposed to simply reducing
emissions to a predetermined level, and if the economy is subject to shocks, then it is likely that
the optimal path for emissions will be time-dependent. In particular, the welfare maximizing
level of emissions will depend on the aggregate state of the economy. Second, our analysis
identiÖes state-contingent taxes as an important tool towards implementing e¢cient levels of
output and emissions. Third, we discuss the optimal permit-issue policy (similar to optimal
monetary policy) in the presence of shocks.2 We identify and explore some intriguing parallels
between emission permits and Öat money. In particular, the trade value of both objects is
partially determined by expectations, while their supply is set by an authority with a goal of
reaching a constrained-e¢cient allocation for the society.
Our model is motivated by dynamic mechanism design in monetary theory, and we employ

this approach to study optimal policy regarding emissions.3 In a related ináuential paper,
Weitzman (1974) studied price versus quantity-targeting policies in the presence of uncertainty
and concluded that their e§ectiveness depends on the relative elasticities of supply and demand.

1One of the Örst such systems was established in the US in 1990 trough the Clean Air Act in order to reduce
sulfur dioxide emissions. As a follow-up to the Kyoto protocol, EU countries adopted the so called EU Emission
Trading System (ETS) in 2005 in connection to a reduction in carbon emissions.

2Of course, a ìcentral permit issuer,î an authority similar to a central bank, is not yet in existence. One
implication of our analysis is to point out the need for such an authority to be established.

3For related applications of dynamic mechanism design to optimal taxation and to monetary theory see, for
example, Golosov, Kocherlakota, and Tsyvinski (2003) and Wallace (2012).
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However, Weitzman did not consider state-contingent policies. Following the literature on
dynamic mechanism design, we will allow for state-contingent taxes in what follows. This is
important as there is nothing in these models that precludes such policies and, as we will show,
they tend to perform better than non-contingent ones.
We show that a state-contingent tax system can do at least as well as a cap-and-trade

system in most cases, and there is a sense in which it can dominate it when there is endogenous
clean technology adoption. More generally, we argue that policy-makers should think about
permit-issue in a manner similar to that used by central bankers. We discuss the determination
of the optimal permit-issue policy. At the optimum, the price of permits increases over time.
In the absence of aggregate risk, we Önd that there is no role for banking. In other words, the
optimum can be supported even if the permits expire at the end of the speciÖed period of time.
In the presence of aggregate risk, the optimal supply of permits is not constant over time and
must respond to the shocks a§ecting the economy. Finally, when Örms can choose the level of
technological progress in green technologies, emissions trading cannot implement the optimal
allocation if there is a high fraction of ìdirty Örms.î The reason is that emissions trading either
makes technology adoption by these Örms too slow, or it must distort production levels relative
to the Örst best. We show that Öscal policies do not su§er from this drawback.

2 The Model

Time is denoted by t = 0; 1; 2; :::. The economy is populated by a [0; 1]-continuum of Örms and
a [0; 1]-continuum of workers. Firms and workers discount the future at a rate  = 1=(1 + r),
where r is the risk free rate. There are two goods: labor and a (numeraire) good. Each Örm
produces the numeraire good using labor. Workers supply labor to the Örm and consume the
numeraire good. Using q units of labor, each Örm can produce f (q) units of the numeraire
good. Production is costly for the society, as each operating Örm creates harmful emissions.
When the level of overall emissions is E, the utility of workers from consuming c units of the
numeraire good and working q hours is U (c; q; E) = u (c) q  E.4 For simplicity, we assume
that there is no storage across periods.
We think of emissions as being subject to random shocks, for example, due to the need

to transport and use energy for cooling or heating due to weather conditions. More precisely,
we assume that in each period, each Örm receives a shock , that determines the degree of
emissions generated by its production activity. At time t, the amount of emissions generated
by a Örm that received shock  and that uses q units of labor is q. For simplicity, we assume
that  is iid across time and across Örms. We denote the cumulative distribution of  as G (),
with support


0; 

.5

While all producing Örms create pollution, they can reduce their emissions at some cost.
More precisely, given , each Örm can reduce its e§ective emissions to an amount y by incurring

4Assuming that the negative externality is generated by the áow of emissions makes our analysis readily
applicable in the context of conventional pollutants such as SOx , NOx , Mercury, or particulates. As is well
known, the stock of accumulated emissions is the relevant variable when one considers externalities related to
CO2.

5We make these simplifying assumptions for tractability. Assuming that emissions are proportional to the
amount of input employed by the Örm simpliÖes some of the algebra, but the results would not change if
emissions were assumed to be proportional to output. The study of correlated shocks is an important topic left
to future research.
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the cost h (q  y), where h () : R+ ! R+ is the same convex function for all Örms, with
h (0) = 0, and h0 (0) = 0. We Örst study our economy in the absence of emissions control, or
any other policy. In this case, Örms maximize their proÖts without being concerned about their
emissions. Since Örms only di§er in their degree of emissions, they behave homogeneously and
they maximize their period-by-period proÖt. Thus, Örms in each period t hire q units of labor
at market wage w in order to solve

 = max
q
f (q) wq

The optimal production satisÖes
f 0 (q) = w (1)

and overall emissions, E, are given by E = q
R
dG (). Taking E as given, consumers maximize

their utility subject to their budget constraint. Since the numeraire good is not storable and
consumers are homogeneous, there is no scope for savings. Consumers solve:

max
c;q

u (c) q  E

s:t: c  wq + 

where  is the Örmís proÖt and E is the level of total emissions. The Örst order conditions
imply

wu0 (c) = 1 (2)

Finally, market clearing gives
c = f (q) (3)

Combining (1) with (2) and (3) we obtain

f 0 (q) u0 (f (q)) = 1 (4)

We denote by q the scale of operation that solves (4). The welfare, W , in this economy is then
given by

(1 )W = u (f (q)) q

1 +

Z
dG ()



2.1 The E¢cient Allocation

Contrary to private Örms, a social planner must take emissions into account when solving for
the e¢cient outcome. It is easy to see that, since Örms vary in their degree of emissions, a
social planner would induce di§erent production levels across di§erent Örms. We assume that
the social planner maximizes the utility of a representative consumer:

max
q();0y()q()

u (c)
Z
q () + y () dG ()

s:t: c =

Z
f (q ()) h (q  y ()) dG () (5)

We denote the e¢cient production scale by q () and the e¢cient level of emissions by y ().
The schedule (q; y) satisÖes the following Örst order conditions for all :

[f 0 (q ()) h0 (q () y ())]u0 (c) +  = 1 (6)

h0 (q () y ()) u0 (c)  + 0 = 1 (7)
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where  is the Lagrange multiplier on y  q (), and 0 is the multiplier on y  0. In that
case, consumption c is given by (5).
Not surprisingly, at the optimum, Örms need to invest in order to reduce their emissions.

Clearly, as h0 (0) = 0, it is e¢cient to reduce emissions by a small amount for all Örms.

Lemma 1 (a) y () < q (), for all  such that q () > 0; (b) Assume f 00 (q) q=f 0 (q)  1,
for all q. Then @y () =@ > 0 and there is a ~ > 0 such that y () = 0 for all  < ~. Also,
q () y () is constant for all   ~.

Proof. (a) Suppose there is one  such that  > 0, then y () = q (). As a consequence,
0 = 0, and (7) implies 1 =  < 0, which is a contradiction.
(b) Since  () = 0, the Örst order conditions are

[f 0 (q ()) h0 (q () y ())]u0 (c) = 1

h0 (q () y ()) u0 (c) + 0 = 1

Consider Örst the set of  for which 0 = 0. Then y () 2 (0; q), and the Örst order conditions
are

f 0 (q ()) u0 (c) = 1 +  (8)

h0 (q () y ()) u0 (c) = 1 (9)

Given c, (8) implies that q () is decreasing with . Also (9) implies that6

dy

d
= q + 

dq

d
= q


1 +



1 + 

f 0

f 00q



so that y () is increasing in  if f 00q
f 0
 1.7 Therefore, there is ~ such that given c, 0 = 0

and y(~) = 0. For ~, q(~) solves

f 0

q(~)


u0 (c) = 1 + ~: (10)

h0

~q(~)


u0 (c) = 1 (11)

so that, in turn, ~ solves

h0

 
~

 
1 + ~

u0 (c)

!!
u0 (c) = 1 (12)

where  (x) = f 01 (x). For all  > ~, the solution is given by (8) and (9). Also, if  < ~, it
cannot be the case that 0 = 0. Thus, y () = 0, for all  < ~. Notice that q ()  y ()
is constant in  whenever y () > 0; i.e., the reduction in emissions is the same for all Örms.
Finally, it remains to show that ~ > 0. By contradiction suppose that ~ = 0. Notice that
for any q () and y () that satisfy (8) and (9), it must be the case that q () < q (0) and
q () ! 0 as  ! 0. Therefore, h0 (q () y ()) ! 0 as  ! 0. Thus, for any c and

6From the last equality notice that q ()  y () is constant. Alternatively, replace the last equality in the
previous one and take the total derivative with respect to .

7This is the case, for instance, when f (x) = lnx, or when f (x) = A (1 ex), with   1.
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" > 0, there is  > 0 such that h0 (q () y ()) = " and "u0 (c) < 1. This contradicts that
y () > 0 for this , implying that ~ > 0.

Thus, all active Örms (q () > 0) need to reduce their emissions factor at the optimum.
Our assumptions also imply that, below a threshold factor, e¢ciency requires that Örms reduce
their emissions to zero. Above this threshold the optimal ex-post emissions are positive and
proportional to the ex-ante emissions. The reason why y () = 0, for all  < ~ is simple.
Our speciÖcation implies that the marginal beneÖt of reducing emissions is the same regardless
whether the reduction comes from a polluting or a non-polluting Örm. The cost of emissions
reduction (in terms of the loss of consumption) is small if Örms are already relatively clean. This
is true even if a Örm eliminates its emissions entirely, as h0 (q ()) converges to zero when  is
small. Hence, the optimal total emissions level is given by E =

R
y () dG (). Interestingly,

the e¢cient allocation dictates that some Örms reduce their emissions, by both reducing their
production scale and by cleaning their act. Of course, in the absence of taxes or other emission
control policies, all Örms operate at the same scale and none becomes cleaner.
For later reference, it is instructive to consider the following thought experiment. Consider

two economies which are identical except that one is subject to a -distribution G0, while
the other is subject to distribution G1, where

R
dG1 () <

R
dG0 (). In words, Örms are

on average cleaner in the economy under G1. Comparing the e¢cient allocations in the two
economies gives us the following.

Lemma 2 The optimal allocations are such that ~1 > ~0. For all  > ~1, q1 () < q

0 () and

y1 () < y

0 ().

Proof. First, notice from (8) and (9) that given a level of aggregate consumption c, the
e¢cient production, q (), is decreasing in  whenever y () > 0. Since there is a larger
fraction of relatively clean Örms in the economy with G1 (while the mass of Örms is the same),
we can infer that c1 > c0. In this case, (8) gives us f

0 (q1) u
0 (c1) = f 0 (q0) u

0 (c0) whenever
y1; y


0 > 0. Therefore, q1 () < q0 (); i.e., Örms with the same  produce relatively less in

the cleaner economy. Finally, from (9), h0 (q1 () y1 ()) u0 (c1) = h0 (q0 () y0 ()) u0 (c0),
so that q1 ()  y1 () > q0 ()  y0 (), and Örms with the same  reduce their emissions
more in the cleaner economy. Next, we demonstrate that ~1 > ~0. First, notice that, for any
c, q () is increasing in  if f 00q  f 0. This implies that, given c, ( 1+

u0(c)
) is increasing in

, where  (x) = f 01 (x). Second, since 0 (x) < 0 and u0 (c1) < u0 (c0), we must have that
( 1+

u0(c1)
) < ( 1+

u0(c0)
), for any . However, (12) implies that ~1( 1+

~1
u0(c1)

) > ~0(
1+~0
u0(c0)

). Since

( 1+
u0(c)

) is increasing in , it implies that ~1 > ~0. Therefore, more Örms are clean ex-post in
the economy with G1.

Typically, e¢ciency will require a reduction in emissions from their level under laissez-faire.
One possible tool towards accomplishing this involves imposing a tax. Another possibility,
which we study Örst, involves imposing controls over emissions, together with a market for
emissions permits, so that Örms which pollute most internalize the cost of their emissions.

3 Policy

We Örst consider an economy where Örms participate in a market for permits.
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3.1 Emissions Trading

We assume that if a Örm produces q units of goods, and given its emission shock is , it will
need to accumulate q units of emission permits. Alternatively, a Örm might invest in order
to reduce its pollution to ex-post emission level y ()  q and then accumulate y () units of
permits. The permits are then remitted once production takes place. There is a market where
Örms can trade permits. The (equilibrium) price of permits in terms of the numeraire will be
denoted by . The sequence of events is as follows:

1. Firms receive their shock  and plan to produce q

2. Firms reduce their emissions factor to y ()  q

3. Firms produce and enjoy proÖt f (q) wq  h (q  y ())

4. Firms adjust their permits in the market and remit y () permits

5. ProÖt, if any, is redistributed to shareholders

6. Firms begin the next period

We assume that the total stock of "em"-ission permits in this economy is M and we deÖne
the Örmís problem recursively. A Örmís individual holdings of permits are denoted by m. We
denote the value function of a Örm entering the market with m permits and a shock  by
V (m; ). This value is deÖned by

V (m; ) = max
q;y;m+

f (q) wq  h (q  y) +  (m y m+) + EV (m+ + T ; )

s:t: 0  y  q

where T is a transfer of permits by the issuing authority. When the Örm enters the market for
permits, the value of its portfolio is m. The Örm then has to remit y permits (with value y)
and decides on how many permits to carry over to the next period, m+. As a consequence, the
Örmís proÖt changes by the amount  (m y m+). Given M , the market clearing conditions
are

Z
y () +m+ () dG () = M (13)

Z
f (q ()) h (q () y) dG () = c (14)

The law of motion for the stock of permits is

M+ =M 
Z
y () dG () + T

Given a policy fTtg, an equilibrium is a list of prices, ftg, a list of quantities and emissions,
fct; qt () ; yt ()g, and trading decisions, fmt ()g, such that, given prices, the decision variables
solves the Örmsí and consumersí problem and markets clear. An equilibrium is stationary
whenever the list of quantities and emissions is time independent; i.e., if fct; qt () ; yt ()g =
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fc; q () ; y ()g, for all t. Next, we demonstrate that there is a unique stationary equilibrium.
We Örst solve the Örmís problem. The Örst order conditions give

f 0 (q) h0 (q  y) = w   () (15)

h0 (q  y)   () + 0 () = 0 (16)

EVm (m+ + T ; )   = if m+ > 0 (17)

where  (), 0 () are the multipliers on the Örmís constraints. Notice that all Örms will
exit the market for permits with the same amount of permits for the next period. The envelope
condition gives

Vm (m; ) =  (18)

and using this expression in (17) we obtain that E+  , with equality if Örms carry permits
from one period to the next. As + does not depend on the i.i.d. idiosyncratic shock , this
gives us

+   ( = if m+ > 0) (19)

In words, Örms are willing to hold permits if the appropriately discounted futures price for
permits equals todayís spot price. If todayís spot price is higher, then Örms prefer to buy
their permits tomorrow, and no permits are held across periods. This will be the case if the
issuing authority is supplying enough permits in the market tomorrow. However, there is no
equilibrium if todayís spot price is lower, as Örms will try to purchase an inÖnite amount of
permits today to resell in tomorrowís futures market.
Like before, the workerís decision is given by (2), and, using market clearing, we obtain an

expression for the wage.

wu0
Z

f (q ()) h (q () y ()) dG ()

= 1: (20)

To solve for y (), Örst notice that all Örms will reduce their ex-post emissions whenever permits
are costly to acquire. Formally, we have the following.

Lemma 3 y () < q, for all , whenever  > 0.

Proof. y () < q, for all , implies that  () = 0, for all . Indeed, suppose there is one 
such that  () > 0 and y () = q. Then 0 () = 0 and since h0 (0) = 0, (16) gives us

  () = 0

which is impossible when  > 0.

The following Lemma states that relatively clean Örms do not emit any ex-post emissions
if permits are costly to acquire. The more costly permits are, the more Örms choose not to
pollute ex-post. In addition, the choice of production level in equilibrium does not depend on
the price of permits, but only on the realized marginal cost of emissions.

Lemma 4 Suppose  > 0. Then there is  () > 0 such that for all    (), we have that
y () = 0. The quantity produced, q (; w), is decreasing in  and w. In addition, 0 () > 0.
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Proof. Let us consider the case of a Örm that does not emit any emissions ex-post; i.e.,
y () = 0, for some . In this case, 0 () >  () = 0 and the Örmís solution is

f 0 (q) h0 (q) = w (21)

h0 (q)   (22)

Notice that the LHS of (21) is strictly decreasing in q, so that (21) deÖnes a function q () that
is uniquely deÖned for each . It is easy to check that q0 () < 0. In addition, q () is decreasing
in w for all  such that y () = 0. Finally, notice that the LHS of (22) is increasing in : taking
the total derivative, and using the expression for q0 () from (21), we obtain8

dh0 (q)

d
= q


1

2h00

2h00  f 00


h00 > 0 (23)

where the inequality follows from the concavity of the production function. Therefore, there is
a  such that y () = 0, for all  < . The threshold  is deÖned by

h0

q



=  (24)

Whenever  () = 0, the emission constraint is not binding, and, from (21), q () is not an
explicit function of . Therefore, when  increases,  also has to increase by (23): more Örms
choose to reduce their emissions to a full extent when the price of permits increases.

Note one e§ect of general equilibrium analysis. The solution q () to (21) does not necessarily
coincide with the e¢cient level q (). Indeed, notice that the wage is given by (20). If a positive
measure of Örms do not follow the social plannerís production plan, the wage is distorted and
so is the decision of Örms with y () = 0.
For relatively high-polluting Örms, we obtain the following characterization. Dirtier Örms

reduce emissions by the same amount; i.e., the di§erence between ex-ante and ex-post emissions
is the same. Dirtier Örms have higher ex-post emissions, but ex-post emissions decline as permits
become more expensive to acquire. The production of dirtier Örms is declining in the wage,
their degree of dirtiness, , and in the price of permits.

Lemma 5 Suppose  > 0. Then, for all  >  (), we have that y (; ) and q (; ; w) are
such that 0 < y < q, q  y is a constant function of , y1 (; ) > 0, y2 (; ) < 0, and
qi (; ; w) < 0, for i = 1; 2; 3.

Proof. Let us consider the case when 0 < y () < q. Setting  () = 0 () = 0, the solution
of the Örm becomes,

f 0 (q) h0 (q  y) = w (25)

h0 (q  y) =  (26)

8From (21), we have


f 00  2h00


q0 () = qh00:

Therefore,

dh0

d
= h00q0 () + qh00 = h00 (q0 () + q) = h00




qh00

f 00  2h00
+ q


= qh00


1

2h00

2h00  f 00


:
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Replacing the expression for h0 in the Örst equation, we obtain

f 0 (q ()) = w +  (27)

h0 (q () y ()) =  (28)

For Örms with  > , the solution is a pair (q () ; y ()) that solves (27) and (28) jointly. Notice
that q0 () < 0 whenever  > 0. Also, using (28) and the expression for q0 (), we obtain that
y0 () > 0 if f 00 (q) q=f 0 (q)  1. Finally, if  increases, (27) implies that q () declines, in
which case (28) implies that y () is also decreasing in .

Interestingly, the higher the price of permits, the lower the wage. Since permits are more
costly to acquire, more Örms decide to spend resources to reduce their ex-ante emissions. Those
Örms who still emit ex-post also reduce their production scale. Therefore, they do not employ
as much labor as when the price of permits is low. As a result, the wage has to fall. In other
words, we have the following.

Lemma 6 w0 () < 0.

Proof. Given Örmsí optimal behavior, the wage is given by

wu0

 Z 

0

f (q ()) h (q ()) dG () +
Z 1



f (q ()) h (q () y ()) dG ()

!
= 1: (29)

Since q () does not depend on  whenever  < , we obtain

u0
@w

@
+ wu00

Z 1



w
@q

@
+ p

@y

@
dG ()


= 0 (30)

where we have used (27) and (28). Since @q
@
< 0 and @y

@
< 0, we have @w

@
< 0. When studying

the general equilibrium e§ect of a rise in , it is important to notice that the e§ect of the rise
in  on q () is somewhat tempered by the decline in wage w. Therefore, a part of the e§ect of
the rise in  on the use of input is absorbed by the general decline in the wage. Still, q () and
y () are decreasing functions of , even when considering the general equilibrium e§ects.

The equilibrium price level is a function of the policy, T . As expected, if there is a high
volume of permits in circulation, they have no market value.

Lemma 7 Suppose T  q
R
dG (). Then  = 0 and q () = q, for all .

Proof. Since T  q
R
dG (), we have that M  q

R
dG () in any period. We Örst guess

that m+ = 0 and show that this is consistent with equilibrium. Denote by y (; ), the choice
of emissions by Örm , given that the price of permits is . From the market clearing condition
for permits (13), using m+ = 0, we have

M =

Z
y (; ) dG () (31)

We have shown that emissions y (; ) are a decreasing function of , for all . Thus, y (; ) 
y (; 0) = q. But since M  q

R
dG (), (31) cannot hold. Hence, the only equilibrium is

when  = 0 and q () = q. (19) then implies that + = 0, which is consistent with m+ = 0.
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Notice that Örms receive a transfer of new permits, T , in each period, so that they are
not forced to carry permits from one period to the next. Also notice from (31) that one way
to achieve the e¢cient level of production, q (), is to set M and T such that M = T =R
y () dG () = E, so that the stock of permits is just su¢cient to cover the e¢cient amount

of emissions, E. In this case, the unique equilibrium price, ; is  = 1=u0 (c), and m+ = 0,
as + < . Thus, there is no banking of permits. In our stationary economy, where the
distribution of emissions is the same in each period, this implies that the stock of permits
should be set at E. This discussion is summarized in the following.

Proposition 8 The equilibrium with permits is e¢cient if M = T = E for all t. The banking
of permits is not necessary for e¢ciency.

Proof. Using (65) and the fact that  () = 0, for all , the Örmís Örst order condition can be
re-arranged as

[f 0 (q) h0 (q  y)]u0 (c) = 1 (32)

h0 (q  y) =  [1 0 ()] (33)

Setting M = E the equilibrium is y = y (), q = q (), and  satisÖes

u0 (c) = 1:

Indeed, given this , we can deÖne 0 () = 0, where 0 is the multiplier in (7). Then the Örmís
FOC and the plannerís FOC coincide. Therefore, M = E implements the e¢cient allocation.9

3.2 Taxes

In this subsection we investigate the implications of taxing emissions. We assume that, while
the government does not observe , a Örmís emissions level, y (), is veriÖable, so the government
can impose a tax,  , on emissions once production takes place. For simplicity, we assume the
tax schedule is history-independent, so that  t (ejht) =  t+1 (ejht+1), where ht is the history of
emissions up to and including date t 1. The tax proceeds are then distributed to consumers
as a lump-sum transfer. The Örmís problem is essentially static. At the start of a period, a
Örm which received shock  solves the following:

max
q;y

f (q) wq  h (q  y)  (y)

s:t: 0  y  q

The Örst order conditions are

f 0 (q) w  h0 (q  y) = 0

h0 (q  y)  0 (y) + ~0  ~ = 0

9In the Appendix we show that the structure of the equilibrium does not change if the issuing authority sells
permits instead of simply assignining them as transfers. These two methods are essentially the same for our
purposes.
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The consumerís problem is

maxu (c) q
s:t: c  wq + T

where T is the governmentís lump sum transfer. The Örst order conditions remain the same as
before:

wu0 (c) = 1 (34)

The plannerís Örst order conditions are

[f 0 (q ()) h0 (q  y)]u0 (c) = 1 (35)

h0 (q  y ()) u0 (c) + 0   = 1 (36)

It is then easy to see the following.

Proposition 9 The tax schedule  (e) = e
u0(c)

implements the e¢cient allocation.

3.3 Aggregate Risk

So far we have assumed that there is no aggregate risk. As a result, the optimal level of emissions
and consumption are known. Here we consider the case where the function G is random. In
that case, c will be a function of G, which is not observable. Yet, we will argue that both
cap and trade and a state-contingent tax can support the e¢cient levels of consumption and
emissions in our economy.
To see this, consider the case where emissions are drawn from a new distribution G1 instead

of the initial distribution G0, where
R
dG1 () <

R
dG0 (). In words, Örms are on average

cleaner and, as a result, E decreases, from E0 to E

1 < E0 . Clearly, any tax system which

does not depend on any aggregate variable, will not achieve the Örst best. Let us consider a
tax system that is measurable with respect to all aggregate variables at the time of production.
There is only one variable that is observable at the time of production and that is the wage
level, w. Then a Örm that emits y has to pay the government  (e;w). Given Gi, let ci be the
plannerís solution for consumption and wi such that wiu0 (ci ) = 1. Then we can deÖne the tax
schedule  (e;w) as follows:

 (e;wi) =
e

u0 (ci )
= ewi

The same analysis as before shows that this tax schedule implements the e¢cient allocation.
We now turn to the cap-and-trade system. We start from the old steady state with optimal

policy M = E0 . We demonstrate that if M = E0 , the new steady state, where   G1 will be
characterized by a lower price of permits, 1 < 0. This is true if E


0 > q1

R
dG1 (). Now,

consider the case where q1
R
dG1 () > E0 . The Örmsí decisions are still given by (15)-(17).

In particular, if 1 > 0, we still have that  () = 0, for all  (it is still optimal to reduce
emissions by a tiny amount), so that the Örst order conditions become

f 0 (q) h0 (q  y) = w (37)

h0 (q  y) + 10 () = 1 (38)

EVm+ (m+; )  1 (39)
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Now suppose, by way of reaching a contradiction, that 1  0. Since m+ (0) = 0, we also
have m+ (1) = 0. From the market clearing conditions (with m+ = 0), we obtain

Z
y (; 1) dG1 () = E


0 : (40)

Also, as the FOCs remain the same, y (; ) still has the same properties as before: it is increas-
ing in  and decreasing in . Everything else is constant and we already showed that y0 () > 0.
Therefore, Z

y (; 0) dG1 () <

Z
y (; 0) dG0 ()

We have shown that y (; ) is a decreasing function of  for all , so that
Z
y (; 1) dG1 () <

Z
y (; 0) dG1 () <

Z
y (; 0) dG0 () = E


0

However, this violates the equilibrium condition (40). Hence, we must have 0 > 1.
In summary, both taxes and emission trading can support the e¢cient allocation. This

conclusion relies on considering state-contingent taxes. While such taxes are not typically
studied in the literature, there is nothing in the economic environment that precludes their
use. In the case of cap and trade, the market price for permits acts as a signalling device.
It declines because Örms are on average cleaner. Notice, however, that without an exogenous
change in the supply of permits, total emissions E will remain constant, and will diverge from
the e¢cient level of emissions. This calls for an authority that can manage the stock of permits
so as to keep the price at 0. Our analysis recommends that the price of permits should be a
policy variable for this authority, very much like the supply in the money market is controlled
by a central bank.

4 Endogenous Technological Change

So far we found that state-contingent taxes and emissions trading are equally successful in
supporting e¢cient outcomes. Our analysis has abstracted from issues related to technological
change. These issues are important, and it would be interesting to know if one policy dominates
if the possibility of endogenous technological change is introduced. In this section we extend
our environment to account for this possibility.
Like before, we identify Örms by their type, , regarding their tendency to pollute. Here

we assume that types are distributed at t = 0 according to the cumulative distribution G with
support [0; ]. Like before, a -Örm emits q units of pollution whenever it uses q units of labor.
We will refer to  as the technological emissions factor. We will assume that Örms can hire
labor in order to invent/adopt new, cleaner technologies. To capture the fact that returns to
R&D involve an element of randomness, we assume that by devoting  units of labor, a Örm
can enter the following lottery. If a -Örm pays this cost, it receives the new emission factor
~ = 0 with probability s in the next period. With probability 1  s, its emission factor is the
same as before, ~ = . In words, with probability s a Örm becomes clean forever and with
probability 1 s it remains as dirty as before. Other than this feature, the model remains the
same as in the previous sections.10

10Note that this speciÖcation results in a non-stationary equilibrium fraction of clean Örms.
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We will consider the simplest case, where G () has a two point support, f0; g, with G (0) =
 denoting the mass of clean Örms. Conveniently, the distribution of Örms in every period is
summarized by the mass of clean Örms, which greatly simpliÖes the analysis. The social planner
chooses non-negative consumption, c, production, q (), and a choice of new technology adoption
i () 2 [0; 1] for each Örm. Clearly, the planner would not invest in a new technology for clean
Örms, so we let i




2 [0; 1] be the mass of dirty Örms entering the lottery. Given that there

is a need for  units of labor to enter the lottery, the consumerís utility function is reduced by
the amount of labor devoted to research and development (1 ) i.11 We denote by V the
objective function of the planner given an initial distribution . To reduce notation, in what
follows we use i = i




, q = q (0), q = q




, while + = +(1 ) si




denotes the measure

of clean Örms in the next period. The planner solves the following problem

V () = Max
c;q;q;i

u (c) q  (1 )

1 + 


q  (1 ) i+ V (+ (1 ) si)

s:t: c = f (q) + (1 ) f (q)
0  i  1

Given the linearity of the objective function in i, we can obtain an explicit form for V ().
Notice Örst that the solution for c, q, and q does not depend on i. Replacing the market
clearing condition in the plannerís objective and taking the Örst order conditions with respect
to q and q, we obtain

u0 (f (q) + (1 ) f (q)) f 0 (q) = 1 (41)

u0 (f (q) + (1 ) f (q)) f 0 (q) = 1 +  (42)

Given , (41) and (42), deÖne the solution by q () and q (), independently of i. Plugging
these values in the market clearing condition gives us c (). Thus, the plannerís problem
becomes

V () = max
i

F () (1 ) i+ V (+ (1 ) si)

s:t: 0  i  1

where F ()  u (c ())  q ()  (1 )

1 + 


q (). As the solution to (41) and (42) is

unique, there is a single value of  such that F () = v, for each value of the instant surplus v.
Also, F is di§erentiable with

F 0() = u0())[f(q()) f(q())] q() + (1 )q()

and F 00() = u00())[f(q())  f(q())]c0() < 0. Our assumptions on preferences and

technology guarantee that F 01 exists. Let   F 01

1



s


. We now guess that the value

function takes the form

V () = F () +


s
( ) +



1 
F () (43)

To verify, using (43) the plannerís problem becomes

max
i

F () (1 ) i+ 

F (+ (1 ) si) +



s
(+ (1 ) si)



s
 +



1 
F ()



s:t: 0  i  1
11We assume that R&D itself is not a polluting activity.
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Assuming an interior solution, the Örst order condition gives

 + sF 0 (+ (1 ) si) +  = 0

or

i =
 
(1 ) s

(44)

Using this policy function in the objective function, we obtain

V () = F () (1 ) 
 
(1 ) s

+ 


F () +



s




s
 +



1 
F ()



= F ()


s
( ) + 


F () +



1 
F ()



= F () +


s
( ) +



1 
F ()

which veriÖes our guess (43). Notice that  is a constant in [0; 1] and (44) gives us @i
@
=

(1)s+()s
[(1)s]2

< 0. Hence, as the measure of clean Örms increases, the planner reduces invest-
ment in the clean technology. Clearly, there is a  such that for all   , the planner chooses
i () = 0. The threshold level, , is deÖned by

 = , or

F 0 () =
1 




s
(45)

If there is no emissions control, Örms maximize their proÖts without being concerned about
their emissions and their production decision follows (1). No Örm would invest in emissions
reduction, as the investment in R&D is costly. Since Örmsí production decision is independent
of their shock, overall emissions, E, capture the emissions from dirty Örms, or E = (1 )q,
where q is the equilibrium level of production. Taking E as given, consumers maximize their
utility subject to their budget constraint and their behavior is again summarized by the Örst
order condition (2). Market clearing is given by (3) and the equilibrium level of production q
satisÖes (4); i.e., f 0 (q) u0 (f (q)) = 1. Welfare in this economy is given by

(1 )W = u (f (q)) q

1 + (1 )



4.1 Emissions Trading

We now consider an economy where Örms are subject to a cap and trade system: a dirty Örm
producing q units of goods and receiving emission factor , will need to accumulate q permits.
The permits are then remitted once production takes place. As before, Örms can also invest in
order to reduce their emissions. There is a market where Örms can trade permits. The price of
permits in terms of the numeraire is again denoted by . The sequence of events is as follows:

1. Firms of type  2 f0; g plan to produce q() and invest i() in clean technologies.
We assume that Örms are able to randomize, so i() 2 [0; 1] denotes the probability of
investing in clean technology R&D
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2. Firms produce and enjoy proÖt f (q) w (q + I), where w is the wage and I 2 f0; 1g is
the result of the lottery i()

3. Firms adjust their permits in the market and remit q permits

4. ProÖt, if any, is redistributed to shareholders

5. Firms learn the result of their R&D investment and move on to the next period

Like before, we denote the total stock of permits in this economy by M , while a Örmís
individual permit holdings are denoted by m. We denote the value of a dirty Örm entering the
futures market with m permits and shock  by V (m), and the value for a corresponding clean
Örm by V0(m). Hence, V(m) for  2 f0; g is deÖned by

V (m) = max
q;i;m0

+;m

+

f (q) w (q + i) + m q

+is

m0

+ + V0

m0
+ + T

0
+


+ [i(1 s) + (1 i)]


m

+ + V(m

+ + T


+)


s:t: 0  i  1

where T + is the (emission factor-speciÖc) transfer of permits by the issuing authority. When
the Örm enters the market for permits, the value of its portfolio is m. The Örm then has to
remit q permits with value q and decides on how many permits to carry over to the next
period, m+. The Örst order conditions for an interior condition i() 2 (0; 1) are

f 0) w   = 0 (46)

w + s

m0

+ + V0

m0
+ + T

0

 s


m

+ + V(m

+ + T


+)

 0 (47)

( = if i > 0, > 0, if i = 1)

+ V 00(m
0
+ + T

0
+)  0(= if m0

+ > 0)

+ V 0 (m

+ + T


+)  0(= if m

+ > 0)

and the envelope condition gives V 0 (m) = , for  2 f0; g. The Örst order condition for i(0)
clearly implies that i(0) = 0, as clean Örms remain clean. The last two conditions imply that
in an equilibrium with banking (in which Örms carry permits from one period to the next) the
price of permits must satisfy

 = +

The consumerís Örst order conditions give

wu0(c) = 1 (48)

Finally, market clearing implies

f

q0

+ (1 )f


q


= c (49)

m0
+ + (1 )m

1
+ = M + T

and the law of motion for clean Örms is + =  + si()(1  ). Next, we determine whether
the e¢cient allocation is implementable. We divide the analysis into three cases. First we
discuss the policy on permits which implements the e¢cient allocation when   . Second,
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we consider the case where  <  but close to . Finally, we consider the case where  is far
below .
(i) Case when   
First, note that the equilibrium outcome in an economy with banking is ine¢cient for all

  . Indeed, in this case the e¢cient allocation is such that q() satisÖes wf 0(q) = 1 + ,
where w = u0 is a constant. But this can only be the case if  = w, a constant. Therefore
 > + = . This contradicts the e¢ciency of banking. The only other way to reach the
e¢cient allocation when    is through a transfer policy T t  0. With   , a transfer
policy is optimal only if (41) and (42) are satisÖed. (46) together with (48) and (49) imply that

t = w() = u
0

f (q0) + (1 )f


q



1, for all t: Hence, it has to be that T t satisÖes

V 0 (T

t ) =  = w()

Therefore T t = T  is constant, and market clearing requires T  = q
. Hence, dirty Örms

should not conduct R&D whenever   , and the transfer should implement i() = 0. That
is, it should be that (we set T 0 = 0)

V0 (0) V(T ) <
w

s

where we can easily compute V0(0) V(T ) to be

V0(0) V(T ) =
f (q0) wq0

1 

f

q


 wq  wq + wT 

1 

Using the market clearing condition in the market for permits, we obtain that i() = 0 if

f

q0

 wq0 

h
f

q


 wq

i
< (1 )

w

s

Since    and F 00 < 0, this condition is satisÖed since the LHS is less than wF 0() which is
equal to the RHS by (45).

(ii) Case when  <  but close to 
In this case, the e¢cient allocation has some dirty Örms investing in R&D according to (44).

Therefore, it must be that (47) holds with equality, or,

m0

+ + V0

m0
+ + T

0
+




m

+ + V(m

+ + T


+)

=
w

s
(50)

We can then write V(m) as

V (m) = max
q;i;m0

+;m

+

f (q) w (q + i) + m q

+is
w

s
 m0

+ + V0

m0
+ + T

0
+



w

s
s:t: 0  i  1

or, using the solution for q0 for clean Örms,

V (m) = max
q;i;m0

+;m

+

f (q) wq + m q

f(q0) m0 + wq0 + V0(m
0)

w

s
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We need to check whether we can obtain (50) using this formulation. Let q be the solution to
the dirty Örmís problem given wage w. Then

V(m) V0(m0) = f(q) f(q0) wq  q + wq0 + (mm0)
w

s

Using this expression into (50) we obtain that i() 2 (0; 1) only if

w

s
= w


m0
+ m


+


+ 

h
f(q0+) f(q


+) w+q

0
+ + w+ (1 + ) q


+ + w+(T

0
+  T


+) +

w+

s

i

where we have used that + = w+, as this is a necessary condition for e¢ciency. Using F
0(+),

we can rewrite the above equation as


w

w+
s

m0
+ m


+


+ 


sF 0(+) + s(T

0
+  T


+) + 


=
w

w+


Comparing this equation with (44) the e¢cient outcome with i = i given by (44) is implemen-
ted only if


w

w+
s

m0
+ m


+


+ s(T 0+  T


+) +  

w

w+
 =  + 

or

s(T 0+  T

+) =


w

w+
 1

 +

w

w+
s

m0
+ m


+


(51)

Since + = w+, the consumersí Örst order condition gives u
01 = w(). Thus,

+


= 
u0(c())

u0(c(+))
< 1

where the last inequality follows from the fact that we assume that  is close to . In this case,
the e¢cient allocation implies that the investment in R&D decreases so that  can be close to
+, so that the inequality holds. In that case, m

0
+ = m


+ = 0, so that (51) gives

T (+) =


1

u0(c(+))

u0(c())




s
+ T 0(+)

Market clearing requires that

(1 )T () + T 0() = (1 )q

Therefore,

T 0(+) = (1 +)q

+  (1 +)


1

u0(c(+))

u0(c())




s

T (+) = (1 +)q

+ + +


1

u0(c(+))

u0(c())




s

Notice that if + is close enough to  (which will be the case when i() is su¢ciently close to
zero), then T 0() > 0, so that the optimal policy is to grant some permits to clean Örms. As
T () is not su¢cient for dirty Örms to pledge the required permits, they will have to purchase
the missing permits from clean Örms, thus, e§ectively subsidizing them. This subsidy makes
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being ìcleanî more attractive and incentivizes investment in R&D. Note that this is in addition
to having to give up revenue from permits. This additional incentive is necessary since e¢ciency
requires that w = , so that the price of permits is pinned down by the wage and the wage is
pinned down by the marginal utility of consumption.

(iii) Case when  is far lower than 
Finally, we consider the case where  is far lower than , so that u0(c(+))=u

0(c()) < .
Then emissions trading cannot implement the e¢cient allocation. Indeed, optimality requires
that w() = (). But this would imply that () < (+). This is not consistent with an
equilibrium, as it implies an excess demand of permits by Örms who will want to resell them in
the next period.
In summary, when the measure of dirty Örms is greater than a critical threshold, the e¢cient

allocation is not implementable via the use of an emissions trading system. Equilibrium under
emissions trading either makes technology adoption by dirty Örms too slow, or it distorts
production of dirty Örms relative to the Örst best. Below we show that Öscal policies do not
seem to su§er from this drawback. As in the case without endogenous technology change, a
tax scheme can implement the Örst best.

4.2 Taxes

We denote the value of a dirty Örm entering the futures market by V, and the value for a clean
Örm by V0. Hence, for  2 f0; g, V is deÖned by

V() = max
q;i
f (q) w (q + i)  (qj)

+isV0(+) + [i(1 s) + (1 i)] V(+)
s:t: 0  i  1

The Örst order conditions are

f 0) w   0(qj) = 0 (52)

w + sV0

+

 sV(+)  0(= 0, if i > 0, > 0, if i = 1) (53)

Clearly, optimality requires that
 0(qj) = w()

so that the optimal tax is linear in the quantity of emissions; i.e., (qj) = w()q+x(). To
induce investment, the tax must be such that (53) holds with equality whenever i > 0. Using
q0 as the optimal choice of clean Örms, and (53) at equality, we can rewrite V() as

V() = max
q
f (q) wq   (qj)


f(q0) wq0  (0j)


+ V0() w=s

Therefore,

V(+)V0(+) = f

q+

w(+)q


+ 


q+j+




f(q0+) w(+)q

0
+  (0j+)


w(+)=s
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and using this expression back in (53), we obtain that i 2 (0; 1) only if

V0

+

 V(+) =

w()

s

f(q0+) w(+)q

0
+  x

0(+)



f

q+

 w(+)q


+  w(+)q


+  x

(+)

+
w(+)

s
=

w()

s

sF 0(+) +   s
x0(+) x(+)

w(+)
=

w()

w(+)

Comparing this last expression with (44), we obtain that the tax policy can implement i if

s
x0(+) x(+)

w(+)
=


1

w()

w(+)




or, using the consumersí Örst order condition, if

x0(+) x
(+) =

1

u0(c(+))


1

u0(c(+))

u0(c())




s

In particular, if x0 = 0 then x() < 0 and dirty Örms should receive a corresponding lump-sum
subsidy. Again, the intuition is that without this subsidy, the value of being dirty would be too
low and dirty Örms would invest too much in R&D relative to the Örst best when the marginal
tax rate is w().
Thus, a tax scheme is less constrained in achieving the optimum than an emissions trading

system. Equilibrium under cap-and-trade imposes the additional condition that  = w, which
reduces the range of policies available and, as a result, may fail to attain the Örst best. Modeling
explicitly the money-like feature of permits implies that there are additional requirements that
need to be satisÖed in order for permits to be valued in equilibrium. These requirements are
binding, in the sense that they restrict the set of environments in which cap-and-trade can be
as e§ective as a tax.

5 Conclusion

Emissions trading mechanisms have been proposed, and in some cases implemented, as a tool
to reduce pollutants. We used insights from dynamic mechanism design in monetary economics
to derive properties of optimal dynamic emissions trading mechanisms. We demonstrated that
a state-contingent tax system can do at least as well as a cap-and-trade system in most cases,
and there is a sense in which it can dominate when there is endogenous progress in clean
technologies. More generally, we argue that policy-makers should think about permit-issue in
a manner similar to that used by central banks. The optimal policy must ensure that the price
of emissions increases over time. In the absence of aggregate risk, there is no role for banking,
and the optimum can be supported even if the permits expire at the end of the speciÖed period
of time. In the presence of aggregate risk, the optimal supply of permits is not constant over
time and must respond to the shocks a§ecting the economy. Finally, when Örms can choose
the level of technological progress in green technologies, emissions trading cannot implement
the e¢cient allocation if there are a many "dirty Örms." The reason is that emissions trading
either makes technology adoption by such Örms too slow, or it must distort production relative
to the Örst best. We showed that Öscal policies do not su§er from this drawback.
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6 An Extension: Futures Market

In the emissions trading system studied in the body of the paper we assumed that the issuing
authority assigns permits to Örms at the start of a new remittance period. In this section, we
show how our model can be extended to study the market for permits when the government
sells permits rather than transferring them lump-sum and free of charge.12

Assume that Örms receive signal s =  + " on the realization of their shock, , at the start
of the market. The random term " is drawn from a distribution F and E ("i) = 0, for all i.
Given this structure, the Örmís signal is also a Örmís best guess for the true value of . Once
s is observed, a Örm can access a futures market to acquire or sell permits at a price p, for
delivery at the remittance date. At this stage, the government sells an amount T of permits
(buys if T < 0).
Then the true shock is realized and Örms decide on their production and emission levels.

At the remittance date, a spot market for permits opens, where Örms can trade their permits
at a price . Each Örm then presents an amount of permits equal to the amount of emissions
y.
We denote the value of entering the futures market with m permits and shock s by V (m; s).

We denote the value of entering the spot market for permits with m permits and shock value
s as W (m; ). Then, V (m; s) is deÖned by

V (m; s) = max
x
EjsW (m x; x; ) (54)

s:t: x  m

while W (m) solves

W (m;x; ) = max
x;q;y;m+

f (q) wq  h (q  y) +  (m y) + px+   m+ + EsV (m+; s)(55)

s:t: 0  y  q (56)

where  is a lump-sum transfer. Using (55) to replace W in (54), we obtain

V (m; s) = max
xm

px+

Z

js


max
q;y

f (q) wq  h (q  y) +  (m x y)


+max
m+

EsV (m+; s) m+

s:t: 0  y  q

Given M , the market clearing conditions are
Z
x (s) dH (s) + T = 0 (57)

Z
y (; s) dH (s) dG () +m+ = M + T (58)

Z
f (q ()) h (q () y) dG () = c (59)

12More generally, we could investigate competing mechanisms for allocating permits in environments that
include frictions, as in Eeckhout and Kircher (2010). This, however, is beyond the scope of the present paper.
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The stock of permits follows the law of motion

M+ =M 
Z
y () dG () + T

Given a policy fTtg, an equilibrium is a list of quantities and emissions fct; qt () ; yt ()g,
permit-trading decisions fxt () ;mt ()g, and prices fpt; tg, such that, given prices, the list of
decision variables solves the Örmsí and consumersí problems and markets clear. An equilibrium
is stationary whenever the list of quantities and emissions is time independent; i.e., when
fct; qt () ; yt ()g = fc; q () ; y ()g, for all t.
We demonstrate that for any stationary policy T , there is a unique stationary equilibrium.

We Örst solve the Örmís problem. The Örst order conditions give

f 0 (q) h0 (q  y) = w   () (60)

h0 (q  y)   () + 0 () = 0 (61)

p  (s)  = 0 (62)

EsVm+ (m+; s)   = if m0 > 0 (63)

where  (s) is the Lagrange multiplier on the Örmís constraint in the futures market, and
 (), 0 () are the multipliers on the constraints related to emissions reduction. Expression
(62) already incorporates the fact that  will not depend on idiosyncratic shocks. Notice from
(63) that all Örms will exit the market for permits holding the same amount of permits for the
next period. The envelope condition gives

Vm (m; s) =  (1 +  (s)) (64)

The workersí decision is still given by (2) and, using market clearing, we obtain an expression
for the wage

wu0
Z

f (q ()) h (q () y ()) dG ()

= 1 (65)

From (62), it is clear that either  (s) > 0, for all s, and p > , or  (s) = 0, for all s, and p = .
If p > , then all Örms sell their permits, so that T = M < 0. In addition, (58) implies thatR
y (; s) +m+ = 0. Since y (; s)  0 and m+  0, this implies that y (; s) = 0, for all s, .

Clearly this is not the e¢cient equilibrium. So, the only candidate e¢cient equilibrium is one
where  (s) = 0, for all s, so that p = . This is equivalent to an equilibrium where the issuing
authority would buy or sell permits in the spot market during the remittance period. Given
p = , the equilibrium is as in the text, and we can set x (s) = T and y (; s) = y (; s0), for
all (s; s0), since Örms are indi§erent between holding permits across the two markets.
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